Алгебраический материал в начальной школе кратко. Методика изучения избранного алгебраического материала


(8 часов)

План:

1. Цели изучения алгебраического материала в начальных классах.

2. Свойства арифметических действий, изучаемые в начальных классах.

3. Изучение числовых выражений и правил порядка выполнения действий:

Одного порядка без скобок;

Одного порядка со скобками;

Выражения без скобок, включающие 4 арифметических действия, со скобками.

4. Анализ числовых равенств и неравенств, изучаемых в начальных классах (сравнение двух чисел, числа и числового выражения, двух числовых выражений).

5. Введение буквенной символики с переменной.

6. Методика изучения уравнений:

а) дайте определение уравнения (из лекций по математике и из учебника математики для начальной школы),

б) выделите объем и содержание понятия,

в) каким методом (абстрактно-дедуктивным или конкретно-индуктивным) будете вводить это понятие? Опишите основные этапы работы над уравнением.

Выполните задания:

1. Объяснить целесообразность использования в начальных классах неравенств с переменной.

2. Подготовить сообщение к занятию о возможности формирования у учащихся функциональной пропедевтики (через игру, через изучение неравенств).

3. Подобрать задания для учащихся по выполнению существенных и несущественных свойств понятия «уравнение».

1. Абрамова О.А., Моро М.И. Решение уравнений // Начальная школа. – 1983. - №3. – С. 78-79.

2. Ыманбекова П. Средства наглядности при формировании понятия «равенство» и «неравенство» // Начальная школа. – 1978. – №11. – С. 38-40.

3. Щадрова И.В. О порядке действий в арифметическом выражении // Начальная школа. – 2000. - №2. – С. 105-107.

4. Шихалиев Х.Ш. Единый подход к решению уравнений и неравенств // Начальная школа. – 1989. - №8. – С. 83-86.

5. Назарова И.Н. Ознакомление с функциональной зависимостью при обучении решению задач // Начальная школа. – 1989. - №1. – С. 42-46.

6. Кузнецова В.И. О некоторых типичных ошибках учащихся, связанных с вопросами алгебраической пропедевтики // Начальная школа. – 1974. - №2. – С. 31.

Общая характеристика методики изучения

алгебраического материала

Введение алгебраического материала в начальный курс математики позволяет подготовить учащихся к изучению основных понятий современной математики, например таких, как «переменная», «уравнение», «неравенство» и др., способствует развитию у детей функционального мышления.

Основные понятия темы – «выражение», «равенство», «неравенство», «уравнение».

Термин «уравнение» вводится при изучении темы «Тысяча», но подготовительная работа к ознакомлению учащихся с уравнениями начинается с 1 класса. Термины «выражение», «значение выражения», «равенство», «неравенство» включаются в словарь учащихся начиная со 2 класса. Понятие «решить неравенство» в начальных классах не вводится.



Числовые выражения

В математике под выражением понимают постоянную по определенным правилам последовательность математических символов, обозначающих числа и действия над ними. Примеры выражений: 7; 5 + 4; 5 · (3 + в ); 40: 5 + 6 и т.п.

Выражения вида 7; 5 + 4; 10: 5 + 6; (5 + 3) · 10 называют числовыми выражениями в отличие от выражений вида 8 – а ; (3 + в ); 50: к , называемых буквенными выражениями или выражениями с переменной.

Задачи изучения темы

2. Познакомить учащихся с правилами порядка выполнения действий над числами и в соответствии с ними выработать умение находить числовые значения выражений.

3. Познакомить учащихся с тождественными преобразованиями выражений на основе арифметических действий.

В методике ознакомления младших школьников с понятием числового выражения можно выделить три этапа, предусматривающие ознакомление с выражениями, содержащими:

Одно арифметическое действие (I этап);

Два и более арифметических действий одной ступени (II этап);

Два и более арифметических действий разных ступеней (III этап).

С простейшими выражениями – суммой и разностью – учащихся знакомят в I классе (при изучении сложения и вычитания в пределах 10); с произведением и частным двух чисел – во II классе.

Уже при изучении темы «Десяток» в словарь учащихся вводятся названия арифметических действий, термины «слагаемое», «сумма», «уменьшаемое», «вычитаемое», «разность». Помимо терминологии, они должны также усвоить и некоторые элементы математической символики, в частности знаки действий (плюс, минус); они должны научиться читать и записывать простейшие математические выражения вида 5 + 4 (сумма чисел «пять» и «четыре»); 7 – 2 (разность чисел «семь» и «два»).



Сначала учащиеся знакомятся с термином «сумма» в значении числа, являющегося результатом действия сложения, а затем в значении выражения. Прием вычитания вида 10 – 7, 9 – 6 и т.п. основан на знании связи между сложением и вычитанием. Поэтому необходимо научить детей представлять число (уменьшаемое) в виде суммы двух слагаемых (10 – это сумма чисел 7 и 3; 9 – это сумма чисел 6 и 3).

С выражениями, содержащими два и более арифметических действий, дети знакомятся на первом году обучения при усвоении вычислительных приемов ± 2, ± 3, ± 1. они решают примеры вида 3 + 1 + 1, 6 – 1 – 1, 2 + 2 + 2 и др. Вычисляя, например, значение первого выражения, ученик поясняет: «К трем прибавить один, получится четыре, к четырем прибавить один, получится пять». Аналогичным образом поясняется решение примеров вида 6 – 1 – 1 и др. Тем самым первоклассники постепенно готовятся к выводу правила о порядке выполнения действий в выражениях, содержащих действия одной ступени, которое обобщается во II классе.

В I классе дети практически овладеют и другим правилом порядка выполнения действий, а именно выполнения действий в выражениях вида 8 – (4 + 2); (6 - 2) + 3 и др.

Обобщаются знания учащихся о правилах порядка выполнения действий и вводится еще одно правило о порядке выполнения действий в выражениях, не имеющих скобок и содержащих арифметические действия разных ступеней: сложение, вычитание, умножение и деление.

При ознакомлении с новым правилом о порядке выполнения действий работу можно организовать по-разному. Можно предложить детям прочитать правило по учебнику и применить его при вычислении значений соответствующих выражений. Можно также предложить учащимся вычислить, например, значение выражения 40 – 10: 2. ответы могут получиться разными: у одних значение выражения окажется равным 15 у других 35.

После этого учитель поясняет: «Чтобы найти значение выражения, не имеющего скобок и содержащего действия сложения, вычитания, умножения и деления, надо выполнить по порядку (слева направо) сначала действия умножения и деления, а затем (также слева направо) сложения и вычитания. В данном выражении надо сначала 10 разделить на 2, а затем из 40 вычесть полученный результат 5. значение выражения равно 35».

Учащиеся начальных классов фактически знакомятся с тождественными преобразованиями выражений.

Тождественное преобразование выражений – это замена данного выражения другим, значение которого равно значению заданного (термин и определение учащимся начальных классов не даются).

С преобразованием выражений учащиеся встречаются с 1 класса в связи с изучением свойств арифметических действий. Например, при решении примеров вида 10 + (50 + 3) удобным способом дети рассуждают так: «Удобнее десятки сложить с десятками и к полученному результату 60 прибавить 3 единицы. Запишу: 10 (50 + 3) = (10 + 50) + 3 = 63».

Выполняя задание, в котором надо закончить запись: (10 + 7) · 3 = 10 · 3 + 7 · 3 …, дети объясняют: «Слева сумму чисел 10 и 7 умножают на число 3, справа первое слагаемое 10 этой суммы умножили на число 3; чтобы сохранился знак «равно», надо второе слагаемое 7 также умножить на число 3 и полученные произведения сложить. Запишу так: (10 + 7) · 3 = 10 · 3 + 7 · 3».

При преобразовании выражений учащиеся иногда допускают ошибки вида (10 + 4) · 3 =- 10 · 3 + 4. причина подобного рода ошибок связана с неправильным использованием ранее усвоенных знаний (в данном случае с использованием правила прибавления к сумме числа при решении примера, в котором сумму надо умножить на число). Для предупреждения таких ошибок можно предложить учащимся следующие задания:

а) Сравни выражения, записанные в левой части равенств. Чем они похожи, чем отличаются? Объясни, как вычислили их значения:

(10 + 4) + 3 = 10 + (4 + 3) = 10 + 7 = 17

(10 + 4) · 3 = 10 · 3 + 4 · 3 = 30 + 12 = 42

б) Заполни пропуски и найди результат:

(20 + 3) + 5 = 20 + (3 + ð); (20 + 3) · 5 = 20 · ð + 3 · ð.

в) Сравни выражения и поставь между ними знак >,< или =:

(30 + 4) + 2 … 30 + (4 + 2); (30 + 4) + 2 … 30 · 2 + 4 · 2.

г) Проверь вычислением, верны ли следующие равенства:

8 · 3 + 7 · 3 = (8 + 7) · 3; 30 + (5 + 7) = 30 + 7.

Буквенные выражения

В начальных классах предусматривается проведение – в тесной связи с изучением нумерации и арифметических действий – подготовительной работы по раскрытию смысла переменной. С этой целью в учебники математики включаются упражнения, в которых переменная обозначается «окошком». Например, ð < 3, 6 < ð, ð + 2 = 5 и др.

Здесь важно побуждать учащихся к тому, чтобы они стремились подставить в «окошко» не одно, а поочередно несколько чисел, проверяя каждый раз, верная ли получатся запись.

Так, в случае ð < 3 в «окошко» можно подставить числа 0, 1, 2,; в случае 6 < ð - числа 7, 8, 9, 10, 20 и др.; в случае ð + 2 = 5 можно подставить только число 3.

В целях упрощения программы по математике для начальных классов и обеспечения ее доступности буквенная символика как средство обобщения арифметических знаний не используется. Все буквенные обозначения заменяются словесными формулировками.

Например, вместо задания

Предлагается задание в такой форме: «Увеличь число 3 в 4 раза; в 5 раз; в 6 раз; …».

Равенства и неравенства

Ознакомление учащихся начальных классов с равенствами и неравенствами связано с решением следующих задач:

Научить устанавливать отношение «больше», «меньше» или «равно» между выражениями и записывать результаты сравнения с помощью знака;

Методика формирования у младших школьников представлений о числовых равенствах и неравенствах предусматривает следующую этапность работы.

На I этапе, в первую очередь учебную неделю, первоклассники выполняют упражнения на сравнение совокупностей предметов. Здесь целесообразнее всего использовать прием установления взаимно однозначного соответствия. На этом этапе результаты сравнения еще не записываются с помощью соответствующих знаков отношения.

На II этапе учащиеся выполняют сравнение чисел, сначала опираясь на предметную наглядность, а затем на то свойство чисел натурального ряда, в соответствии с которым из двух различных чисел то число больше, которое при счете называют позже, и то число меньше, которое называют раньше. Установленные таким образом отношения дети записывают с помощью соответствующих знаков. Например, 3 > 2, 2 < 3. В дальнейшем при изучении нумерации (в концентрах «Сотня», «Тысяча», «Многозначные числа») для сравнения чисел полезно применять два способа, а именно устанавливать отношения между числами: 1) по месту их расположения в натуральном ряду; 2) на основе сравнения соответствующих разрядных чисел, начиная с высших разрядов. Например, 826 < 829, так как сотен и десятков в этих числах поровну, а единиц в первом числе меньше, чем во втором.

Так же можно сравнивать величины: 4 дм 5 см > 4 дм 3 см, так как дециметров больше, чем во второй. Кроме того, величины можно сначала выразить в единицах одного измерения и уже после этого сравнивать их: 45 см > 43 см.

Подобные упражнения вводятся уже при изучении сложения и вычитания в пределах 10. Их полезно выполнять с опорой на наглядность, например: учащиеся выкладывают на партах слева четыре кружка, а справа четыре треугольника. Выясняется, что фигур поровну – по четыре. Записывают равенство: 4 = 4. затее дети добавляют к фигурам слева один кружок и записывают сумму 4 + 1. Слева фигур больше, чем справа, значит, 4 + 1 > 4.

Используя прием уравнения, учащиеся переходят от неравенства к равенству. Например, на наборное полотно ставят 3 гриба и 4 белочки. Чтобы грибов и белочек было поровну, можно: 1) добавить один гриб (тогда будет 3 гриба и 3 белочки).

На наборном полотне 5 легковых и 5 грузовых машин. Чтобы одних машин было больше, чем других, можно: 1) убрать одну (две, три) машину (легковую или грузовую) или 2) добавить одну (две, три) машину.

Постепенно при сравнении выражений дети переходят от опоры на наглядность к сравнению их значений. Этот способ в начальных классах является основным. При сравнении выражений учащиеся могут также опираться и на знания: а) взаимосвязи между компонентами и результатом арифметического действия: 20 + 5 * 20 + 6 (слева записана сумма чисел 20 и 5, справа – сумма чисел 20 и 6. Первые слагаемые этих сумм одинаковые, второе слагаемое суммы слева меньше, чем второе слагаемое суммы справа, значит, сумма слева меньше, чем сумма справа: 20 + 5 < 20 + 6); б) отношение между результатами и компонентами арифметических действий: 15 + 2 * 15 (слева и справа сначала было поровну – по 15. Затем к 15 прибавили 2, стало больше, чем 15); в) смысла действия умножения: 5 + 5 + 5 + 5 + 5 * 5 · 3 (слева число 5 взяли слагаемым 5 раз, справа число 5 взяли слагаемым 3 раза, значит, сумма слева будет больше, чем справа: 5 + 5 + 5 + 5 + 5 > 5 + 5 + 5); г) свойств арифметических действий: (5 + 2) · 3 * 5 · 3 + 2 · 3 (слева сумму чисел 5 и 2 умножают на число 3, справа находят произведения каждого слагаемого на число 3 и складывают их. Значит, вместо звездочки можно поставить знак «равно»: (5 + 2) · 3 = 5 · 3 + 2 · 3).

В этих случаях вычисления значений выражений используются для проверки правильности постановки знака. Для записи неравенств с переменной в начальных классах используется «окошко»: 2 > ð, ð = 5, ð > 3.

Первые упражнения такого вида полезно выполнять с опорой на числовой ряд, обращаясь к которому учащиеся замечают, что число 2 больше единицы и нуля, поэтому в «окошко» (2 > ð) можно подставлять числа 0 и 1 (2 > 0, 2>1).

Аналогично выполняются и другие упражнения с окошком.

Основным способом при рассмотрении неравенств с переменной является способ подбора.

Для облегчения значений переменной в неравенствах предлагается выбирать их из конкретного ряда чисел. Например, можно предложить выписать те из данных чисел ряда 7, 8, 9, 10, 11, 12, 13, 14, при которых верна запись ð - 7 < 5.

При выполнении данного задания ученик может рассуждать так: «Подставим в «окошко» число 7: 7 минус 7 будет 0, 0 меньше 5, значит число 7 подходит. Подставим в «окошко» число 8:8 минус 7 получится 1, 1 меньше 5, значит, число 8 тоже подходит … Подставим в «окошко» число 12: 12 минус 7 получится 5, 5 меньше 5 – неверно, значит число 12 не подходит. Чтобы запись ð - 7 < 5 была верной, в «окошко» можно подставить любое из чисел 7, 8, 9, 10, 11».

Уравнения

В конце 3 класса дети знакомятся с простейшими уравнениями вида: х +8 =15; 5+х =12; х –9 =4; 13–х =6; х ·7 =42; 4·х =12; х :8 =7; 72:х =12.

Ребенок должен уметь решать уравнения двумя способами:

1) способом подбора (в простейших случаях); 2) способом, основанным на применении правил нахождения неизвестных компонентов арифметических действий. Приведем пример записи решения уравнения вместе с проверкой и рассуждений ребенка при его решении:

х – 9 = 4 х = 4 + 9 х = 13
13 – 9 = 4 4 = 4

«В уравнении х – 9 = 4 икс стоит на месте уменьшаемого. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое (х =4+9.) Проверим: из 13 вычтем 9, получим 4. получилось верное равенство 4 = 4, значит уравнение решено правильно».

В 4 классе ребенка можно познакомить с решением простых задач способом составления уравнения.

В «Обязательном минимуме содержания начального образования» по образовательной области «Математика» изучение алгебраического материала, как это было ранее, не выделено в качестве отдельной дидактической единицы подлежащей обязательному изучению. В данной части документа кратко отмечено, что необходимо «дать знания о числовых и буквенных выражениях, их значениях и различиях между этими выражениями». В «Требованиях к качеству подготовки выпускников» можно лишь найти короткую фразу неопределенного смысла «научить вычислять неизвестный компонент арифметического действия». Вопрос о том, как научить «вычислять неизвестный компонент» должен решать автор программы или технологии обучения.

Рассмотрим, как характеризуются понятия «выражение», «равенство», «неравенство», «уравнение» и какова методика их изучения в различных методическихсистемах обучения

7.1. Выражения и их виды …
в курсе математики

начальной школы

Выражением называют математическую запись, состоящую из чисел, обозначенных буквами или цифрами, соединенных знаками арифметических действий. Отдельно взятое число есть также выражение. Выражение, в котором все числа обозначены цифрами, называют числовым выражением .

Если в числовом выражении выполнить указанные действия, то получим число, которое называют значением выражения.

Выражения можно классифицировать по числу арифметических действий, которые используются при записи выражений, и по способу обозначения чисел. По первому основанию выражения разбиваются на группы: элементарных (не содержащих знака арифметического действия), простых (один знак арифметического действия) и составных (более одного знака арифметических действий) выражений. По второму основанию различают числовые (числа записаны цифрами) и буквенные (хотя бы одно число или все числа обозначены буквами) выражения.

Математическую запись, которую в математике принято называть выражением, необходимо отличать от других видов записей.

Примером или вычислительным упражнением называют запись выражения вместе с требованием к его вычислению.

5+3 выражение, 8- его значение

5+3= вычислительное упражнение (пример),

8- результат вычислительного упражнения (примера)

В зависимости от знака арифметического действия, который используется в записи простого выражения, простые выражения разбивают на группы выражений со знаком «+,», «-», « », «:». Эти выражения имеют особые названия (2 + 3 — сумма; 7 — 4 – разность; 7 × 2 – произведение; 6: 3 — частное) и общепринятые способы чтения, с которыми знакомятся учащиеся начальной школы.

Способы чтения выражений со знаком «+»:

25+17 – 25 плюс 17

25+17 – к 25-ти прибавить 17

25+17 – 25 да 17

25+17 – 25 и еще 17.

25+17 – сумма чисел двадцать пять и семнадцать (сумма 25-ти и 17-ти)

25+17 – 25 увеличить на 17

25+17 – 1-ое слагаемое 25, 2-ое слагаемое 17

С записью простых выражений дети знакомятся по мере того, как вводится соответствующее математическое действие. Например, знакомство с действием сложения сопровождается записью выражения на сложение 2 + 1, здесь же даются образцы первых форм чтения этих выражений: «к двум прибавить один», «два и один», «два да один», «два плюс один». Другие формулировки вводятся по мере знакомства детей с соответствующими понятиями. Изучая название компонентов действий и их результатов, дети учатся читать выражение, используя эти названия (первое слагаемое 25, второе 17 или сумма 25-ти и 17-ти). Знакомство с понятиями «увеличить на…», «уменьшить на…» позволяет ввести новую формулировку для чтения выражений на сложение и вычитание с этими терминами «двадцать пять увеличить на семнадцать», «двадцать пять уменьшить на семнадцать». Так же поступают с остальными видами простых выражений.

С понятиями «выражение», «значение выражения» в ряде образовательных систем («Школа России» и «Гармония») дети знакомятся несколько позже, чем научатся их записывать, вычислять и читать не всеми, но многими формулировками. В других программах и системах обучения (система Л.В. Занкова, «Школа 2000…», «Школа 2100») эти математические записи сразу называют выражениями и используют это слово в вычислительных заданиях.

Обучая детей читать выражения различными формулировками, мы вводим их в мир математических терминов, даем возможность познать математический язык, отрабатываем смысл математических отношений, что, несомненно, повышает математическую культуру ученика, способствует осознанному усвоению многих математических понятий.

Ø Прием «делай как я». Правильная речь учителя, за которым дети повторяют формулировки, — основа грамотной математической речи школьников. Значительный эффект дает использование приема сравнения формулировок, которые произносят дети, с заданным образцом. Полезно использовать прием, когда учитель специально допускает речевые ошибки, а дети его исправляют.

Ø Дать несколько выражений и предложить прочитать эти выражения разными способами. Один ученик читает выражение, а другие проверяют. Полезно давать столько выражений, сколько формулировок знают дети к этому времени.

Ø Учитель диктует выражения разными способами, а дети записывают сами выражения, не вычисляя их значения. Такие задания направлены на то, чтобы проверить знание детьми математической терминологии, а именно: умение записывать выражения или вычислительные упражнения, прочтенные разными математическими формулировками.

Если ставится задача, предусматривающая проверку сформированности вычислительного навыка полезно читать выражения или вычислительные упражнения только теми формулировками, которые хорошо усвоены, не заботясь об их разнообразии, а детям предложить записывать только результаты вычислений, сами выражения можно не записывать.

Выражение, состоящее из нескольких простых, называют составным.

Следовательно, существенным признаком составного выражения является его составленность из простых выражений. Знакомство с составным выражением можно осуществить по следующему плану:

1. Дать простое выражение и вычислить его значение

(7 + 2 = 9), назвать его первым или данным.

2. Составить второе выражение так, чтобы значение первого стало компонентом второго (9 — 3), назвать это выражение продолжением для первого. Вычислить значение второго выражения(9 – 3 = 6).

3. Проиллюстрировать процесс слияния первого и второго выражений, опираясь на пособие.

Пособие представляет собой прямоугольный лист бумаги, который разделен на 5 частей и сложен в виде гармошки. На каждой части пособия имеются определенные записи:

7 + 2 = — 3 = 6

Скрывая вторую и третью части данного пособия (из первого выражения скрываем требование к его вычислению и его значение, а во втором скрываем ответ на вопрос первого), получаем составное выражение и его значение (7 + 2 -3 = 6). Даем ему название – составное (составлено из других).

Иллюстрируем процесс слияния других пар выражений или вычислительных упражнений, подчеркивая:

ü объединить в составное можно лишь такую пару выражений, когда значение одного из них является компонентом другого;

ü значение выражения продолжения совпадает со значением составного выражения.

Закрепляя понятие составного выражения полезно выполнять задания двух видов.

1 вид. Дана совокупность простых выражений, необходимо выделить из них пары, для которых верно отношение «значение одного из них является компонентом другого». Составить из каждой пары простых выражений одно составное выражение.

2 вид. Дано составное выражение. Необходимо записать простые выражения, из которых оно составлено.

Описанный прием полезно использовать по нескольким причинам:

§ по аналогии можно ввести понятие составной задачи;

§ ярче выделяется существенный признак составного выражения;

§ предупреждаются ошибки при вычислении значений составных выражений;

§ данный прием позволяет проиллюстрировать роль скобок в составных выражениях.

Составные выражения, содержащие знаки «+», «-» и скобки, изучаются с первого класса. В некоторых системах обучения («Школа России», «Гармония», «Школа 2000») не предусматривается изучение скобок в первом классе. Их вводят во втором классе при изучении свойств арифметических действий (сочетательное свойство суммы). Скобки вводятся как знаки, с помощью которых в математике можно показать порядок выполнения действий в выражениях содержащих более одного действия. В дальнейшем дети знакомятся с составными выражениями, содержащими действия первой и второй ступеней со скобками и без них. Изучение составных выражений сопровождается изучением правил порядка действий в этих выражениях и способов чтения составных выражений.

Значительное внимание во всех программах уделяется преобразованию выражений, которые осуществляются на основании сочетательного свойства суммы и произведения, правил вычитания числа из суммы и суммы из числа, умножения суммы на число и деления суммы на число. На наш взгляд, в отдельных программах, недостаточно упражнений направленных на формирование умения читать составные выражения, что, естественно, позже сказывается на умении решать уравнения вторым способом (см. ниже). В последних изданиях учебно-методических комплексов по математике для начальных классов по всем программам большое внимание уделяется заданиям на составление программ и алгоритмов вычислений для составных выражений в три — девять действий.

Выражения , в которых одно число или все числа обозначены буквами, называютбуквенными (а + 6; (а +в с – буквенные выражения). Пропедевтикой к введению буквенных выражений являются выражения, где одно из чисел заменяется точками или пустым квадратом. Называют эту запись выражением «с окошком» (+4 – выражение с окошком).

Типичными заданиями, содержащими буквенные выражения, являются задания на нахождение значений выражений при условии, что буква принимает различные значения из заданного перечня значений. (Вычисли значения выражений а + в и а в , если а = 42, в = 90 или а = 100, в = 230). Для вычисления значений буквенных выражений заданные значения переменных поочередно подставляют в выражения и далее работают как с числовыми выражениями.

Буквенные выражения могут использоваться для введения обобщенных записей свойств арифметических действий, формируют представления о возможности переменных значений компонентов действий и позволяют подвести детей к центральному математическому понятию «переменная величина». Кроме того, с помощью буквенных выражений дети осознают свойства существования значений суммы, разности, произведения, частного на множестве целых неотрицательных чисел. Так, в выражении а + в при любых значениях переменных а и в можно вычислить значение суммы, а значение выражения а в , на указанном множестве можно вычислить только в том случае, если в меньше или равно а . Анализируя задания, направленные на установление возможных ограничений для значений а и в в выражениях а в и а : в , дети устанавливают свойства существования значения произведения и значения частного в адаптированном к возрасту виде.

Буквенная символика используется в качестве средства обобщения знаний и представлений детей о количественных характеристиках объектов окружающего мира и о свойствах арифметических действий. Обобщающая роль буквенной символики делает ее очень сильным аппаратом для формирования обобщенных представлений и способов действий с математическим содержанием, что, несомненно, повышает возможности математики в развитии и формировании абстрактных форм мышления.

7.2. Изучение равенств и неравенств в курсе

математики начальных классов

Сравнение чисел и/или выражений приводит к появлению новых математических понятий «равенство» и «неравенство».

Равенством называют запись, содержащую два выражения соединенные знаком «=» — равно (3 = 1 + 2; 8 + 2 =7 + 3 — равенства).

Неравенством называют запись, содержащую два выражения и знак сравнения, указывающий на отношения «больше» или «меньше» между данными выражениями

(3 < 5; 2+4 > 2+3 — неравенства).

Равенства и неравенства бывают верными и неверными . Если значения выражений, стоящих в левой и правой части равенства, совпадают, то равенство считается верным, если нет, то равенство будет неверным. Соответственно: если в записи неравенства знак сравнения правильно указывает на отношения между числами (элементарными выражениями) или значениями выражений, то неравенство верно, в противном случае, неравенство неверно.

Большинство заданий в математике связано с вычислением значений выражений. Если значение выражения найдено, то выражение и его значение можно соединить знаком «равно», что принято записывать в виде равенства: 3+1=4. Если значение выражения вычислили верно, то равенство называют верным, если неверно, то записанное равенство считают неверным.

С равенствами дети знакомятся в первом классе одновременно с понятием «выражение» в теме «Числа первого десятка». Осваивая символическую модель образования последующего и предыдущего числа, дети записывают равенства 2 + 1 = 3 и 4 – 1 = 3. В дальнейшем равенства активно используются при изучении состава однозначных чисел и далее с этим понятием связано изучение практически каждой темы в курсе математики начальной школы.

Вопрос о введении понятий «верное» и «неверное» равенства в различных программах решается неоднозначно. В системе «Школа 2000…» это понятие вводят одновременно с записью равенства, в системе «Школа России» — при изучении темы «Состав однозначных чисел» в записях равенств «с окошком» (+3 = 5; 3 + = 5). Подбирая число, которое можно вставить в окошко, дети убеждаются в том, что в одних случаях получаются верные, а в других неверные равенства. Следует заметить, что данные математические записи с одной стороны позволяют закрепить состав чисел или другой вычислительный материал по теме урока, с другой, формируют представление о переменной величине и являются подготовкой к усвоению понятия «уравнение».

Во всех программах наиболее часто используются два вида заданий, связанных с понятиями равенства и неравенства, верные и неверные равенства и неравенства:

· Даны числа или выражения, нужно между ними поставить знак так, чтобы запись была верной. Например, «Поставь знаки: «<», «>», «=» 7-5 … 7-3; 6+4 … 6+3».

· Даны записи со знаком сравнения, надо подставить вместо окошка такие числа, чтобы получилось верное равенство или неравенство. Например, «Подбери числа так, чтобы записи были верными: > ; или +2 < +3».

Если сравниваются два числа, то выбор знака дети обосновывают, опираясь на принцип построения ряда натуральных чисел, значность числа или его состав. Сравнивая два числовых выражения или выражение с числом, дети вычисляют значения выражений, а затем сравнивают их значения, т. е. сводят сравнение выражений к сравнению чисел. В образовательной системе «Школа России» этот способ дается в виде правила: «Сравнить два выражения – значит, сравнить их значения». Этот же набор действий дети выполняют для проверки правильности выполненного сравнения. «Проверь, верны ли неравенства:

42 + 6 > 47; 47 — 5 > 47 — 4».

Наибольший развивающий эффект имеют задания, требующие поставить знак сравнения (или проверить верно ли поставлен знак сравнения) не вычисляя значений выражений данных в левой и правой частях неравенства (равенства). В этом случае дети должны поставить знак сравнения, опираясь на выявленные математические закономерности.

Форма предъявления задания и способы оформления его выполнения варьируется как в рамках одной программы, так и в различных программах.

Традиционно при решении неравенств с переменной использовалось два способа: способ подбора и способ сведения к равенству.

Первый способ называют способом подбора, что вполне отражает действия производимые ребенком при его использовании. При этом способе значение неизвестного числа подбирается либо из произвольного множества чисел, либо из заданной их совокупности. После каждого выбора значения переменной (неизвестного числа) осуществляется проверка правильности выбора. Для этого в заданное неравенство вместо неизвестного числа подставляется найденное значение. Вычисляется значение левой и правой части неравенства (значение одной из частей может быть элементарным выражением, т.е. числом), а затем, сравнивается значение левой и правой части полученного неравенства. Все эти действия могут выполняться устно или с записью промежуточных вычислений.

Второй способ заключается в том, что в записи неравенства вместо знака «<» или «>» ставят знак равенства и решают равенство известным детям способом. Затем, проводятся рассуждения, при которых используются знания детей об изменении результата действия в зависимости от изменения одного из его компонентов и определяются допустимые значения переменной.

Например, «Определи, какие значения может принимать а в неравенстве 12 — а < 7». Решение и образец рассуждений:

· Найдем значение а , если 12 – а = 7

· Вычисляю, применяя правило нахождения неизвестного вычитаемого: а = 12 — 7, а = 5.

· Уточняю ответ: при а равном 5-ти («корень уравнения равен 5-ти» в системе Занкова и «Школа 2000…») значение выражения 12 — 5 равно 7, а нам нужно найти такие значения этого выражения, которые бы были меньше 7-ми, значит надо из 12 вычитать числа большие пяти. Это могут быть числа 6, 7, 8, 9, 10, 11, 12.(чем большее число мы вычитаем из одного и того же числа, тем меньше значение разности). Значит, а = 6, 7, 8, 9, 10, 11, 12. Значения большие 12-ти переменная а принимать не может, так как большее число из меньшего вычитать нельзя (мы не умеем, если не вводятся отрицательные числа).

Пример подобного задания из учебника 3 класса (1-4), авторы: И.И. Аргинская, Е.И. Ивановская :

№ 224. «Реши неравенства, используя решение соответствующих уравнений:

к — 37 < 29, 75 — с > 48, а + 44 < 91.

Проверь свои решения: подставь в каждое неравенство несколько чисел, больших и меньших корня соответствующего уравнения.

Составь свои неравенства с неизвестными числами, реши их и проверь найденные решения.

Предложи свое продолжение задания».

Надо отметить, что ряд технологий и программ обучения, усиливая логическую составляющую и значительно превышая стандартные требования к содержанию математического образования в начальных классах, вводят понятия:

Ø переменная величина, значение переменной;

Ø понятие «высказывание» (верные и неверные утверждения называют высказыванием (М3П) ), «истинные и ложные высказывания»;

Ø рассматривают системы уравнений (И.И. Аргинская, Е.И. Ивановская).

7.3. Изучение уравнений в курсе математики

начальных классов

Равенство, содержащее переменную величину, называют уравнением. Решить уравнение — значит, найти такое значение переменной величины (неизвестного числа), при котором уравнение преобразуется в верное числовое равенство. Значение переменной, при котором уравнение преобразуется в верное равенство, называют корнем уравнения.

В некоторых образовательных системах («Школа России» и «Гармония») введение понятия «переменной» не предусматривается. В них уравнение трактуется как равенство, содержащее неизвестное число. И далее, решить уравнение, значит, найти такое число, при подстановке которого вместо неизвестного получается верное равенство. Это число называют значением неизвестного или решением уравнения. Таким образом, термин «решение уравнения» используется в двух смыслах: как число (корень), при подстановке которого вместо неизвестного числа уравнение обращается в верное равенство, и как сам процесс решения уравнения.

В большинстве программ и систем обучения в начальной школе рассматривают два способа решения уравнений.

Первый способ называют способом подбора, что вполне отражает действия производимые ребенком при его использовании. При этом способе значение неизвестного числа подбирается либо из произвольного множества чисел, либо из заданной их совокупности. После каждого выбора значения осуществляется проверка правильности решения. Сущность проверки вытекает из определения уравнения и сводится к выполнению четырех взаимосвязанных действий:

1. В заданное уравнение вместо неизвестного числа подставляется найденное значение.

2. Вычисляется значение левой и правой части уравнения (значение одной из частей может быть элементарным выражением, т.е. числом).

3. Сравнивается значение левой и правой части полученного равенства.

4. Делается вывод о верности или неверности полученного равенства и далее, является ли найденное число решением (корнем) уравнения.

На первых порах выполняется только первое действие, а остальные проговариваются. Этот алгоритм проверки сохраняется для каждого способа решения уравнения.

Ряд систем обучения («Школа 2000», система обучения Д.Б. Эльконина – В.В. Давыдова) для решения простых уравнений используют зависимость между частью и целым.

8 + х =10; 8 и х — части; 10 – целое. Чтобы найти часть можно из целого вычесть известную часть: х = 10 — 8; х = 2.

В этих системах обучения, еще на этапе решения уравнений способом подбора в речевую практику вводится понятие «корень уравнения» и сам способ решения называют решением уравнения с помощью «подбора корней».

Второй способ решения уравнения опирается на зависимость между результатом и компонентами действия. Из этой зависимости вытекает правило нахождения одного из компонентов. Например, зависимость между значением суммы и одним из слагаемых звучит так: «если из значения суммы двух слагаемых вычесть одно из них, то получится другое слагаемое». Из этой зависимости вытекает правило нахождения одного из слагаемых: «чтобы найти неизвестное слагаемое, надо из значения суммы вычесть известное слагаемое». Решая уравнение, дети рассуждают так:

Задание: Реши уравнение 8 + х = 11.

В данном уравнении неизвестно второе слагаемое. Мы знаем, чтобы найти второе слагаемое нужно из значения суммы вычесть первое слагаемое. Значит, надо из 11 вычесть 8. Записываю: х = 11 – 8. Вычисляю, 11 минус 8 равно 3, пишу х = 3.

Полная запись решения с проверкой будет иметь следующий вид:

8 + х = 11

х = 11 — 8

х = 3

Названным выше способом решаются уравнения с двумя и более действиями со скобками и без них. В этом случае нужно определить порядок действий в составном выражении и, называя компоненты в составном выражении по последнему действию, следует выделить неизвестное, которое в свою очередь может быть выражением на сложение, вычитание, умножение или деление (выражено суммой, разностью, произведением или частным). Затем применяют правило для нахождения неизвестного компонента, выраженного суммой, разностью, произведением или частным, учитывая названия компонентов по последнему действию в составном выражении. Выполнив вычисления в соответствии с этим правилом, получают простое уравнение (или снова составное, если первоначально в выражении было три или более знаков действий). Его решение проводится по уже описанному выше алгоритму. Рассмотрим следующее задание.

Реши уравнение (х + 2) : 3 = 8.

В данном уравнении неизвестно делимое, выраженное суммой чисел х и 2. (В соответствии с правилами порядка действий в выражении, действие деления выполняют последним).

Чтобы найти неизвестное делимое, можно значение частного умножить на делитель: х + 2 = 8 × 3

Вычисляем значение выражения справа от знака равенства, получаем: х + 2 = 24.

Полная запись имеет вид: (х + 2) : 3 = 8

х + 2 = 8 × 3

х + 2 = 24

х = 24 — 2

Проверка: (22 + 2) : 3 = 8

В образовательной системе «Школа 2000…» в связи с широким использованием алгоритмов и их видов дается алгоритм (блок – схема) решения таких уравнений (см. схему 3).

Второй способ решения уравнений достаточно громоздкий, особенно для составных уравнений, где правило взаимосвязи между компонентами и результатом действия применяется многократно. В связи с этим, многие авторы программ (системы «Школа России», «Гармония») совсем не включают в программу начальных классов знакомство с уравнениями сложной структуры либо вводят их в конце четвертого класса.

В данных системах в основном ограничиваются изучением уравнений следующих видов:

х + 2 = 6; 5 + х = 8 — уравнения на нахождение неизвестного слагаемого;

х – 2 = 6; 5 – х = 3 — уравнения на нахождение неизвестного уменьшаемого и вычитаемого соответственно;

х × 5 = 20, 5 × х = 35 — уравнения на нахождение неизвестного множителя;

х : 3 = 8, 6: х = 2 — уравнения на нахождение неизвестного делимого и делителя соответственно.

х × 3 = 45 — 21; х × (63 — 58) = 20; (58 — 40) : х = (2 × 3) — уравнения, где одно или два числа, входящих в уравнение, представлено числовым выражением. Способ решения этих уравнений сводится к вычислению значений этих выражений, после чего уравнение принимает вид одного из простых уравнений выше указанных видов.

Ряд программ обучения математике в начальных классах (образовательная система Л.В. Занкова и «Школа 2000…») практикуют знакомство детей с более сложными уравнениями, где правило взаимосвязи между компонентами и результатом действия приходится применять многократно и, нередко, требуют выполнения действий по преобразованию одной из частей уравнения на основе свойств математических действий. Например, в этих программах учащимся в третьем классе для решения предлагаются такие уравнения:

х — (20 + х ) = 70 или 2 × х – 8 + 5 × х = 97.

В математике существует и третий способ решения уравнений, который опирается на теоремы о равносильности уравнений и следствия из них. Например, одна из теорем о равносильности уравнений в упрощенной формулировке читается так: «Если к обеим частям уравнения с областью определения х прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному».

Из данной теоремы вытекают следствия, которые и используются при решении уравнений.

Следствие 1. Если к обеим частям уравнения прибавить одно и то же число, то получим новое уравнение равносильное данному.

Следствие 2. Если в уравнении одно из слагаемых (числовое выражение или выражение с переменной) перенести из одной части в другую, поменяв знак слагаемого на противоположный, то получим уравнение равносильное данному.

Таким образом, процесс решения уравнения сводится к замене данного уравнения, равносильным, причем эта замена (преобразование) может осуществляться только с учетом теорем о равносильности уравнений или следствий из них.

Этот способ решения уравнений является универсальным, с ним детей знакомят в системе обучения Л.В. Занкова и в старших классах.

В методике работы над уравнениями накоплено большое число творческих заданий :

· на выбор уравнений по заданному признаку из ряда предложенных;

· на сравнение уравнений и способов их решений;

· на составление уравнений по заданным числам;

· на изменение в уравнении одного из известных чисел так, чтобы значение переменной стало больше (меньше), чем первоначально найденное значение;

· на подбор известного числа в уравнении;

· на составление алгоритмов решения с опорой на блок-схемы решения уравнений или без них;

· составление уравнений по текстам задач.

Следует заметить, что в современных учебниках наблюдается тенденция к введению материала на понятийном уровне. Например, каждому из выше названных понятий дается развернутое определение, отражающее его существенные признаки. Однако не все встречающиеся определения отвечают требованиям принципа научности. Например, понятие «выражение» в одном из учебников математики для начальных классов трактуется так: «Математическая запись из арифметических действий, не содержащая знаков больше, меньше или равно называется выражением» (образовательная система «Школа 2000»). Заметим, что в данном случае определение составлено неверно, так как в нем описано то, чего в записи нет, но неизвестно, что там есть. Это довольно типичная неточность, которую допускают в определении.

Заметим, что определения понятиям даются не сразу, т.е. не при первичном знакомстве, а в отсроченном времени, после того как дети познакомились с соответствующей математической записью и научились ею оперировать. Определения даются чаще всего в неявном виде, описательно.

Для справки : В математике встречаются как явные, так и неявные определения понятий. Среди явных определений наиболее распространены определения через ближайший род и видовое отличие . (Уравнение – это равенство, содержащее переменную величину.). Неявные определения можно разделить на два вида: контекстуальные и остенсивные . В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через анализ конкретной ситуации.

Например: 3 + х = 9. х — неизвестное число, которое надо найти.

Остенсивные определения используются для введения терминов путем демонстрации объектов, которые этими терминами обозначаются. Поэтому эти определения еще называют определениями путем показа. Например, таким способом определяются в начальных классах понятия равенства и неравенства.

2 + 7 > 2 + 6 9 + 3 = 12

78 — 9 < 78 6 × 4 = 4 × 6

неравенства равенства

7.4. Порядок выполнения действий в выражениях

Наши наблюдения и анализ ученических работ показывает, что изучение данной содержательной линии сопровождается следующими видами ошибок школьников:

· Не могут правильно применить правило порядка действий;

· Неверно отбирают числа для выполнения действия.

Например, в выражении 62 + 30: (18 — 3) выполняют действия в следующем порядке:

62 + 30 = 92 или так: 18 – 3 = 15

18 — 3 = 15 30: 15 = 2

30: 15 = 2 62 + 30 = 92

Опираясь на данные о типичных ошибках, возникающих у школьников можно выделить два основных действия, которые следует формировать в процессе изучения данной содержательной линии:

1) действие по определению порядка выполнения арифметических действий в числовом выражении;

2) действие по отбору чисел для вычисления значений промежуточных математических действий.

В курсе математики начальных классов традиционно правила порядка действий формулируются в следующем виде.

Правило 1 . В выражениях без скобок, содержащих только сложение и вычитание или умножение и деление, действия выполняются в том порядке, как они записаны: слева направо.

Правило 2. В выражениях без скобок сначала выполняются по порядку слева направо умножение или деление, а потом сложение или вычитание.

Правило 3 . В выражениях со скобками сначала вычисляют значение выражений в скобках. Затем по порядку слева направо выполняются умножение или деление, а потом сложение или вычитание.

Каждое из данных правил ориентировано на определенный вид выражений:

1) выражения без скобок, содержащие только действия одной ступени;

2) выражения без скобок, содержащие действия первой и второй ступени;

3) выражения со скобками, содержащие действия, как первой, так и второй ступени.

При такой логике введения правил и последовательности их изучения выше названные действия будут состоять из ниже перечисленных операций, овладение которыми и обеспечивает усвоение данного материала:

§ распознать структуру выражения и назвать, к какому типу оно относится;

§ соотнести данное выражение с правилом, которым надо руководствоваться при вычислении его значения;

§ установить порядок действий в соответствии с правилом;

§ правильно отобрать числа для выполнения очередного действия;

§ выполнить вычисления.

Данные правила вводятся в третьем классе как обобщение для определения порядка действий в выражениях различной структуры. Нужно заметить, что до знакомства с этими правилами дети уже встречались с выражениями со скобками. В первом и втором классах при изучении свойств арифметических действий (сочетательное свойство сложения, распределительное свойство умножения и деления), умеют вычислять значения выражений, содержащих действия одной ступени, т.е. им знакомо правило № 1. Поскольку вводится три правила, отражающие порядок действий в выражениях трех видов, то необходимо, прежде всего, научить детей выделять различные выражения с точки зрения тех признаков, на которые ориентировано каждое правило.

В образовательной системе «Гармония » основную роль в изучении этой темы играет система целесообразно подобранных упражнений, через выполнение которых дети усваивают общий способ определения порядка действий в выражениях разной структуры. Нужно заметить, что автор программы по математике в данной системе очень логично выстраивает методику введения правил порядка действий, последовательно предлагает детям упражнения для отработки операций, входящих в состав выше названных действий. Чаще всего встречаются задания:

ü на сравнение выражений и последующее выявление в них признаков сходства и различия (признак сходства отражает тип выражения, с точки зрения его ориентации на правило);

ü на классификацию выражений по заданному признаку;

ü на выбор выражений с заданными характеристиками;

ü на конструирование выражений по заданному правилу (условию);

ü на применение правила в различных моделях выражений (символической, схематической, графической);

ü на составление плана или блок-схемы порядка выполнения действий;

ü на постановку скобок в выражении при заданном его значении;

ü на определение порядка действий в выражении при вычисленном его значении.

В системах «Школа 2000…» и «Начальная школа ХХI века» предлагается несколько другой подход к изучению порядка действий в составных выражениях. При этом подходе основное внимание уделяется пониманию учащимися структуры выражения. Важнейшим учебным действием при этом является выделение в составном выражении нескольких частей (разбиение выражения на части). В процессе вычисления значений составных выражений учащиеся пользуются рабочими правилами :

1. Если выражение содержит скобки, то его разбивают на части так, чтобы одна часть с другой были соединены действиями первой ступени (знаками «плюс» и «минус»), не заключенными в скобки, находят значение каждой части, а затем действия первой ступени выполняют по порядку – слева направо.

2. Если в выражении нет действий первой ступени, не заключенных в скобки, но есть действия умножения и деления, не заключенные в скобки, то выражение разбивают на части, ориентируясь на эти знаки.

Эти правила позволяют производить вычисление значений выражений, содержащих большое число арифметических действий.

Рассмотрим пример.

Знаками плюс и минус, не заключенными в скобки, разобьем выражение на части: от начала до первого знака (минус), не заключенного в скобки, затем от этого знака до следующего (плюс) и от знака плюс до конца.

3 · 40 — 20 · (60 — 55) + 81: (36: 4)

Получилось три части:

1 часть — 3 40

2 часть — 20 · (60 — 55)

и 3 часть 81: (36: 4).

Находим значение каждой части:

1) 3 · 40 = 120 2) 60 — 55 = 5 3) 36: 4 = 9 4) 120 -100 = 20

20 · 5 = 100 81: 9 = 9 20 + 9 = 29

Ответ: значение выражения 29.

Цель семинаров по данной содержательной линии

· реферировать и рецензировать статьи (пособия) дидактического, педагогического и психологического содержания;

· составлять картотеку к докладу, для изучения конкретной темы;

· выполнять логико-дидактический анализ школьных учебников, учебных комплектов, а также анализ реализации в учебниках определенной математической идеи, линии;

· подбирать задания для обучения понятиям, обоснованию математических утверждений, формированию правила или построению алгоритма.

Задания для самоподготовки

Тема занятия . Характеристика понятий «выражение», «равенство», «неравенство», «уравнение» и методика их изучения в различных методических

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

Введение

В любой современной системе общего образования математика занимает одно из центральных мест, что, несомненно, говорит об уникальности этой области знаний.

Что представляет собой современная математика? Зачем она нужна? Эти и подобные им вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребенка и его образовательных потребностей.

Часто говорят, что математика - это язык современной науки. Однако, представляется, что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому, что математика к нему не сводится.

Выдающийся отечественный математик А.Н. Колмогоров писал: "Математика не просто один из языков. Математика - это язык плюс рассуждения, это как бы язык и логика вместе. Математика - орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим. Очевидные сложности природы с ее странными законами и правилами, каждое из которых допускает отдельное очень подробное объяснение, на самом деле тесно связаны. Однако, если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому " .

Таким образом, математика позволяет сформировать определенные формы мышления, необходимые для изучения окружающего нас мира.

Каково же влияние математики вообще и школьной математики в частности на воспитание творческой личности? Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является на наш взгляд важнейшим элементом общей культуры. Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Помимо всего прочего, она вырабатывает еще и привычку к методичной работе, без которой не мыслим ни один творческий процесс. Максимально раскрывая возможности человеческого мышления, математика является его высшим достижением. Она помогает человеку в осознании самого себя и формировании своего характера. Это то немногое из большого списка причин, в силу которых математические знания должны стать неотъемлемой частью общей культуры и обязательным элементом в воспитании и обучении ребенка. Курс математики (без геометрии) в нашей 10-летней школе фактически разбит на три основные части: на арифметику (I - V классы), алгебру (VI - VIII классы) и элементы анализа (IX - Х классы). Что служит основанием для такого подразделения? Конечно, каждая эта часть имеет свою особую "технологию".

Так, в арифметике она связана, например, с вычислениями, производимыми над многозначными числами, в алгебре - с тождественными преобразованиями, логарифмированием, в анализе - с дифференцированием и т.д. Но каковы более глубокие основания, связанные с понятийным содержанием каждой части? Следующий вопрос касается оснований для различения школьной арифметики и алгебры (т.е. первой и второй части курса). В арифметику включают изучение натуральных чисел (целых положительных) и дробей (простых и десятичных). Однако специальный анализ показывает, что соединение этих видов чисел в одном школьном учебном предмете неправомерно.

Дело в том, что эти числа имеют разные функции: первые связаны со счетом предметов, вторые - с измерением величин. Это обстоятельство весьма важно для понимания того факта, что дробные (рациональные) числа являются лишь частным случаем действительных чисел.

С точки зрения измерения величин, как отмечал А.Н. Колмогоров, "нет столь глубокого различия между рациональными и иррациональными действительными числами. Из педагогических соображений надолго задерживаются на рациональных числах, так как их легко записать в форме дробей; однако то употребление, которое им с самого начала придается, должно было бы сразу привести к действительным числам во всей их общности" .

А.Н. Колмогоров считал оправданным как с точки зрения истории развития математики, так и по существу предложение А. Лебега переходить в обучении после натуральных чисел сразу к происхождению и логической природе действительных чисел. При этом, как отмечал А.Н. Колмогоров, "подход к построению рациональных и действительных чисел с точки зрения измерения величин нисколько не менее научен, чем, например, введение рациональных чисел в виде "пар". Для школы же он имеет несомненное преимущество" (.

Таким образом, есть реальная возможность на базе натуральных (целых) чисел сразу формировать "самое общее понятие числа" (по терминологии А. Лебега), понятие действительного числа. Но со стороны построения программы это означает не более не менее, как ликвидацию арифметики дробей в ее школьной интерпретации. Переход от целых чисел к действительным - это переход от арифметики к "алгебре", к созданию фундамента для анализа. Эти идеи, высказанные более 20 лет назад, актуальны и сегодня.

1. Общетеоретические аспекты изучения алгебраического материала в начальной школе

алгебраический школа сравнение математика

1.1 Опыт введения элементов алгебры в начальной школе

Содержание учебного предмета, как известно, зависит от многих факторов - от требований жизни к знаниям учащихся, от уровня соответствующих наук, от психических и физических возрастных возможностей детей и т.д. Правильный учет этих факторов является существенным условием наиболее эффективного обучения школьников, расширения их познавательных возможностей. Но иногда это условие по тем или иным причинам не соблюдается. В этом случае преподавание не дает должного эффекта как в отношении усвоения детьми круга необходимых знаний, так и в отношении развития их интеллекта .

Представляется, что в настоящее время программы преподавания некоторых учебных предметов, в частности математики, не соответствуют новым требованиям жизни, уровню развития современных наук (например, математики) и новым данным возрастной психологии и логики. Это обстоятельство диктует необходимость всесторонней теоретической и экспериментальной проверки возможных проектов нового содержания учебных предметов.

Фундамент математических знаний закладывается в начальной школе. Но, к сожалению, как сами математики, так и методисты и психологи уделяют весьма малое внимание именно содержанию начальной математики. Достаточно сказать, что программа по математике в начальной школе (I - IV классы) в основных своих чертах сложилась еще 50 - 60 лет назад и отражает, естественно, систему математических, методических и психологических представлений того времени .

Рассмотрим характерные особенности государственного стандарта по математике в начальной школе. Основным ее содержанием являются целые числа и действия над ними, изучаемые в определенной последовательности. Вначале изучаются четыре действия в пределе 10 и 20, затем - устные вычисления в пределе 100, устные и письменные вычисления в пределе 1000 и, наконец, в пределе миллионов и миллиардов. В IV классе изучаются некоторые зависимости между данными и результатами арифметических действий, а также простейшие дроби. Наряду с этим программа предполагает изучение метрических мер и мер времени, овладение умением пользоваться ими для измерения, знание некоторых элементов наглядной геометрии - вычерчивание прямоугольника и квадрата, измерение отрезков, площадей прямоугольника и квадрата, вычисление объемов .

Полученные знания и навыки ученики должны применять к решению задач и к выполнению простейших расчетов. На протяжении всего курса решение задач проводится параллельно изучению чисел и действий - для этого отводится половина соответствующего времени. Решение задач помогает учащимся понять конкретный смысл действий, уяснить различные случаи их применения, установить зависимость между величинами, получить элементарные навыки анализа и синтеза.

С I по IV класс дети решают следующие основные типы задач (простых и составных): на нахождение суммы и остатка, произведения и частного, на увеличение и уменьшение данных чисел, на разностное и кратное сравнение, на простое тройное правило, на пропорциональное деление, на нахождение неизвестного по двум разностям, на вычисление среднего арифметического и некоторые другие виды задач .

С разными типами зависимостей величин дети сталкиваются при решении задач. Но весьма характерно - учащиеся приступают к задачам после и по мере изучения чисел; главное, что требуется при решении - это найти числовой ответ. Дети с большим трудом выявляют свойства количественных отношений в конкретных, частных ситуациях, которые принято считать арифметическими задачами. Практика показывает, что манипулирование числами часто заменяет действительный анализ условий задачи с точки зрения зависимостей реальных величин. Задачи, вводимые в учебники, не представляют к тому же системы, в которой более "сложные" ситуации были бы связаны и с более "глубокими" пластами количественных отношений. Задачи одной и той же трудности можно встретить и в начале, и в конце учебника. Они меняются от раздела к разделу и от класса к классу по запутанности сюжета (возрастает число действий), по рангу чисел (от десяти до миллиарда), по сложности физических зависимостей (от задач на распределение до задач на движение) и по другим параметрам. Только один параметр - углубление в систему собственно математических закономерностей - в них проявляется слабо, неотчетливо. Поэтому очень сложно установить критерий математической трудности той или иной задачи. Почему задачи на нахождение неизвестного по двум разностям и на выяснение среднего арифметического (III класс) труднее задач на разностное и кратное сравнение (II класс)? Методика не дает на этот вопрос убедительного и логичного ответа .

Таким образом, учащиеся начальных классов не получают адекватных, полноценных знаний о зависимостях величин и общих свойствах количества ни при изучении элементов теории чисел, ибо они в школьном курсе связаны по преимуществу с техникой вычислений, ни при решении задач, ибо последние не обладают соответствующей формой и не имеют требуемой системы. Попытки методистов усовершенствовать приемы преподавания хотя и приводят к частным успехам, однако не меняют общего положения дела, так как они заранее ограничены рамками принятого содержания.

Представляется, что в основе критического анализа принятой программы по арифметике должны лежать следующие положения:

Понятие числа не тождественно понятию о количественной характеристике объектов;

Число не является исходной формой количественных отношений.

Приведем обоснование этих положений. Общеизвестно, что современная математика (в частности, алгебра) изучает такие моменты количественных отношений, которые не имеют числовой оболочки. Также хорошо известно, что некоторые количественные отношения вполне выразимы без чисел и до чисел, например, в отрезках, объемах и т.д. (отношение "больше", "меньше", "равно"). Изложение исходных общематематических понятий в современных руководствах осуществляется в такой символике, которая не предполагает обязательного выражения объектов числами. Так, в книге Е.Г. Гонина "Теоретическая арифметика" основные математические объекты с самого начала обозначаются буквами и особыми знаками .

Характерно, что те или иные виды чисел и числовые зависимости приводятся лишь как примеры, иллюстрации свойств множеств, а не как их единственно возможная и единственно существующая форма выражения. Далее, примечательно, что многие иллюстрации отдельных математических определений даются в графической форме, через соотношение отрезков, площадей . Все основные свойства множеств и величин можно вывести и обосновать без привлечения числовых систем; более того, последние сами получают обоснование на основе общематематических понятий.

В свою очередь многочисленные наблюдения психологов и педагогов показывают, что количественные представления возникают у детей задолго до появления у них знаний о числах и приемах оперирования ими. Правда, есть тенденция относить эти представления к категории "доматематических образований" (что вполне естественно для традиционных методик, отождествляющих количественную характеристику объекта с числом), однако, это не меняет существенной их функции в общей ориентировке ребенка в свойствах вещей. И порой случается, что глубина этих якобы "доматематических образований" более существенна для развития собственно математического мышления ребенка, чем знание тонкостей вычислительной техники и умение находить чисто числовые зависимости. Примечательно, что акад. А.Н. Колмогоров, характеризуя особенности математического творчества, специально отмечает следующее обстоятельство: "В основе большинства математических открытий лежит какая-либо простая идея: наглядное геометрическое построение, новое элементарное неравенство и т.п. Нужно только применить надлежащим образом эту простую идею к решению задачи, которая с первого взгляда кажется недоступной" .

В настоящее время целесообразны самые различные идеи относительно структуры и способов построения новой программы. К работе по ее конструированию необходимо привлечь математиков, психологов, логиков, методистов. Но во всех своих конкретных вариантах она, как представляется, должна удовлетворять следующим основным требованиям:

Преодолевать существующий разрыв между содержанием математики в начальной и средней школе;

Давать систему знаний об основных закономерностях количественных отношений объективного мира; при этом свойства чисел, как особой формы выражения количества, должны стать специальным, но не основным разделом программы;

Прививать детям приемы математического мышления, а не только навыки вычислений: это предполагает построение такой системы задач, в основе которой лежит углубление в сферу зависимостей реальных величин (связь математики с физикой, химией, биологией и другими науками, изучающими конкретные величины);

Решительно упрощать всю технику вычисления, сводя до минимума ту работу, которую нельзя выполнить без соответствующих таблиц, справочников и других подсобных (в частности, электронных) средств.

Смысл этих требований ясен: в начальной школе вполне возможно преподавать математику как науку о закономерностях количественных отношений, о зависимостях величин; техника вычислений и элементы теории чисел должны стать особым и частным разделом программы.

Опыт конструирования новой программы по математике и ее экспериментальная проверка, проводимая начиная с конца 1960-х годов, позволяют уже в настоящее время говорить о возможности введения в школу начиная с I класса систематического курса математики, дающего знания о количественных отношениях и зависимостях величин в алгебраической форме.

1.2 Проблема происхождения алгебраических понятий и ее значение для построения учебного предмета

Разделение школьного курса математики на алгебру и арифметику, конечно же, условно. Переход от одного к другому происходит постепенно. В школьной практике смысл этого перехода маскируется тем, что изучение дробей фактически происходит без развернутой опоры на измерение величин - дроби даются как отношения пар чисел (хотя формально важность измерения величин в методических руководствах признается). Развернутое введение дробных чисел на основе измерения величин неизбежно приводит к понятию действительного числа. Но последнего как раз обычно и не происходит, так как учащихся долго держат на работе с рациональными числами, а тем самым задерживают их переход к "алгебре" .

Иными словами, школьная алгебра начинается именно тогда, когда создаются условия для перехода от целых к действительным числам, к выражению результата измерения дробью (простой и десятичной - конечной, а затем бесконечной). Причем исходным может быть знакомство с операцией измерения, получение конечных десятичных дробей и изучение действий над ними. Если учащиеся уже владеют такой формой записи результата измерения, то это служит предпосылкой для "забрасывания" идеи о том, что число может выражаться и бесконечной дробью. И эту предпосылку целесообразно создавать уже в пределах начальной школы.

Если понятие дробного (рационального) числа изъять из компетенции школьной арифметики, то граница между нею и "алгеброй" пройдет по линии различия между целым и действительным числами. Именно оно "рубит" курс математики на две части. Здесь не простое различие, а принципиальный "дуализм" источников - счета и измерения .

Следуя идеям Лебега относительно "общего понятия числа", можно обеспечить полное единство преподавания математики, но лишь с момента и после ознакомления детей со счетом и целым (натуральным) числом. Конечно, сроки этого предварительного ознакомления могут быть разными (в традиционных программах для начальной школы они явно затянуты), в курс начальной арифметики можно даже вносить элементы практических измерений (что имеет место в программе), - однако все это не снимает различия оснований у арифметики и "алгебры" как учебных предметов. "Дуализм" исходных пунктов препятствует и тому, чтобы в курсе арифметики по-настоящему "приживались" разделы, связанные с измерением величин и переходом к подлинным дробям. Авторы программ и методисты стремятся сохранить устойчивость и "чистоту" арифметики как школьного учебного предмета. Указанное различие источников является основной причиной преподавания математики по схеме - сначала арифметика (целое число), затем "алгебра" (действительное число) .

Эта схема кажется вполне естественной и незыблемой, к тому же она оправдывается многолетней практикой преподавания математики. Но есть обстоятельства, которые с логико-психологической точки зрения требуют более тщательного анализа правомерности этой жесткой схемы преподавания.

Дело в том, что при всем различии этих видов чисел они относятся именно к числам, т.е. к особой форме отображения количественных отношений. Принадлежность целого и действительного чисел к "числам" служит основанием для предположения о генетической производности и самих различий счета и измерения: у них есть особый и единый источник, соответствующий самой форме числа .

Знание особенностей этой единой основы счета и измерения позволит более четко представить условия их происхождения, с одной стороны, и взаимосвязь - с другой.

К чему же обратиться, чтобы нащупать общий корень ветвистого дерева чисел? Представляется, что, прежде всего, необходимо проанализировать содержание понятия величина. Правда, с этим термином сразу связывается другой - измерение. Однако правомерность подобного соединения не исключает определенной самостоятельности смысла "величины". Рассмотрение этого аспекта позволяет сделать выводы, сближающие, с одной стороны, измерение со счетом, с другой - оперирование числами с некоторыми общематематическими отношениями и закономерностями .

Итак, что такое "величина" и какой интерес она представляет для построения начальных разделов школьной математики? В общем употреблении термин "величина" связан с понятиями "равно", "больше", "меньше", которые описывают самые различные качества (длину и плотность, температуру и белизну). В.Ф. Каган ставит вопрос о том, какими общими свойствами эти понятия обладают. Он показывает, что они относятся к совокупностям - множествам однородных предметов, сопоставление элементов которых позволяет применить термины "больше", "равно", "меньше" (например, к совокупностям всех прямолинейных отрезков, весов, скоростей и т.д.) .

Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А и В, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А>В, А<В. Эти предложения составляют полную дизъюнкцию (по крайней мере, одно имеет место, но каждое исключает все остальные).

В.Ф. Каган выделяет следующие восемь основных свойств понятий "равно", "больше", "меньше": .

1) Имеет место по крайней мере одно из соотношений: А=В, А>В, А<В.

2) Если имеет место соотношение А=В, то не имеет места соотношение А<В.

3) Если имеет место соотношение А=В, то не имеет места соотношение А>В.

4) Если А=В и В=С, то А=С.

5) Если А>В и В>С, то А>С.

6) Если А<В и В<С, то А<С.

7) Равенство есть отношение обратимое: из соотношения А=В всегда следует соотношение В=А.

8) Равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.

Первые три предложения характеризуют дизъюнкцию основных соотношений "=", ">", "<". Предложения 4 - 6 - их транзитивность при любых

трех элементах А, В и С. Следующие предложения 7 - 8 характеризуют только равенство - его обратимость и возвратность (или рефлексивность). Эти восемь основных положений В.Ф.Каган называет поcтулатами сравнения, на базе которых можно вывести ряд других свойств величины.

Эти выводные свойства В.Ф. Каган описывает в форме восьми теорем:

I. Соотношение А>В исключает соотношение В>А (А<В исключает В<А).

II. Если А>В, то В<А (если А<В, то В>А).

III. Если имеет место А>В, то не имеет места A

IV. Если А1=А2, А2=А3,.., Аn-1=А1, то А1=Аn.

V. Если А1>А2, А2>А3,.., Аn-1>Аn, то А1>Аn.

VI. Если А1<А2, А2<А3,.., Аn-1<Аn, то А1<Аn.

VII. Если А=С и В=С, то А=В.

VIII. Если имеет место равенство или неравенство А=В, или А>В, или А<В, то оно не нарушится, когда мы один из его элементов заменим равным ему элементом (здесь имеет место соотношение типа: если А=В и А=С, то С=В; если А>В и А=С, то С>В и т.д.).

Постулатами сравнения и теоремами, указывает В.Ф. Каган, "исчерпываются все те свойства понятий "равно", "больше" и "меньше", которые в математике с ними связываются и находят себе применение независимо от индивидуальных свойств того множества, к элементам коего мы их в различных частных случаях применяем" .

Свойства, указанные в постулатах и теоремах, могут характеризовать не только те непосредственные особенности объектов, которые мы привыкли связывать с "равно", "больше", "меньше", но и со многими другими особенностями (например, они могут характеризовать отношение "предок - потомок"). Это позволяет встать при их описании на общую точку зрения и рассматривать, например, под углом зрения этих постулатов и теорем любые три вида отношений "альфа", "бета", "гамма" (при этом можно установить, удовлетворяют ли эти отношения постулатам и теоремам и при каких условиях).

Под таким углом зрения можно, например, рассматривать такое свойство вещей, как твердость (тверже, мягче, одинаковая твердость), последовательность событий во времени (следование, предшествование, одновременность) и т.д. Во всех этих случаях соотношения "альфа", "бета", "гамма" получают свою конкретную интерпретацию. Задача, связанная с подбором такого множества тел, которое бы имело эти отношения, а также выявление признаков, по которым можно было бы характеризовать "альфа", "бета", "гамма", - это есть задача на определение критериев сравнения в данном множестве тел (практически ее в ряде случаев решить нелегко). "Устанавливая критерии сравнения, мы претворяем множество в величину", - писал В.Ф. Каган . Реальные объекты могут рассматриваться под углом зрения разных критериев. Так, группа людей может рассматриваться по такому критерию, как последовательность моментов рождения каждого ее члена. Другой критерий - относительное положение, которое примут головы этих людей, если их поставить рядом на одной горизонтальной плоскости. В каждом случае группа будет претворяться в величину, имеющую соответствующее наименование - возраст, рост. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины). Так возникают понятия "объем", "вес", "электрическое напряжение" и т.д. "При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения", - отмечал В.Ф. Каган .

В качестве важнейшего примера математической величины этот автор рассматривает натуральный ряд чисел. С точки зрения такого критерия сравнения, как положение, занимаемое числами в ряду (занимают одно место, следует за..., предшествует), этот ряд удовлетворяет постулатам и поэтому представляет собой величину. По соответствующим критериям сравнения совокупность дробей также претворяется в величину. Таково, по В.Ф. Кагану, содержание теории величины, играющей важнейшую роль в деле обоснования всей математики.

Работая с величинами (отдельные их значения целесообразно фиксировать буквами), можно производить сложную систему преобразований, устанавливая зависимости их свойств, переходя от равенства к неравенству, выполняя сложение (и вычитание), причем при сложении можно руководствоваться коммутативным и ассоциативным свойствами. Так, если дано соотношение А=В, то при "решении" задач можно руководствоваться соотношением В=А. В другом случае при наличии соотношений А>В, В=С можно заключить, что А>С. Поскольку при а>b существует такое с, что а=b+с, то можно найти разность а и b (а-b=с), и т.д.

Все эти преобразования можно выполнить на физических телах и других объектах, установив критерии сравнения и соответствие выделенных отношений постулатам сравнения.

Приведенные выше материалы позволяют заключить, что и натуральные, и действительные числа одинаково прочно связаны с величинами и некоторыми их существенными особенностями. Нельзя ли эти и другие свойства сделать предметом специального изучения ребенка еще до того, как вводится числовая форма описания отношения величин? Они могут послужить предпосылками для последующего развернутого введения числа и его разных видов, в частности для пропедевтики дробей, понятий координат, функции и других понятий уже в младших классах .

Что может быть содержанием этого начального раздела? Это знакомство с физическими объектами, критериями их сравнения, выделяющими величину, как предмет математического рассмотрения, знакомство со способами сравнения и знаковыми средствами фиксации его результатов, с приемами анализа общих свойств величин. Это содержание нужно развернуть в относительно подробную программу преподавания и, главное, связать ее с теми действиями ребенка, посредством которых он может этим содержанием овладеть (конечно, в соответствующей форме). Вместе с тем нужно экспериментальным, опытным путем установить, могут ли дети 7 лет усвоить эту программу, и какова целесообразность ее введения для последующего преподавания математики в начальных классах в направлении сближения арифметики и начальной алгебры.

До сих пор наши рассуждения носили теоретический характер и были направлены на выяснение математических предпосылок построения такого начального раздела курса, который знакомил бы детей с основными алгебраическими понятиями (до специального введения числа). Выше были описаны основные свойства, характеризующие величины. Естественно, что детям 7 лет бессмысленно читать "лекции" относительно этих свойств .

Необходимо было найти такую форму работы детей с дидактическим материалом, посредством которой они смогли бы, с одной стороны, выявить в окружающих их вещах эти свойства, с другой - научились бы фиксировать их определенной символикой и проводить элементарный математический анализ выделяемых отношений.

В этом плане программа должна содержать, во-первых, указание тех свойств предмета, которые подлежат освоению, во-вторых, описание дидактических материалов, в-третьих, - и это с психологической точки зрения главное - характеристики тех действий, посредством которых ребенок выделяет определенные свойства предмета и осваивает их. Эти "составляющие" образуют программу преподавания в собственном смысле этого слова. Конкретные особенности этой гипотетической программы и ее "составляющих" имеет смысл излагать при описании процесса самого обучения и его результатов .

Здесь представляется схема данной программы и ее узловые темы.

Тема I. Уравнивание и комплектование объектов (по длине, объему, весу, составу частей и другим параметрам).

Практические задачи на уравнивание и комплектование. Выделение признаков (критериев), по которым одни и те же объекты могут быть уравнены или укомплектованы. Словесное обозначение этих признаков ("по длине", по весу" и т.д.).

Эти задачи решаются в процессе работы с дидактическим материалом (планками, грузами и т.д.) путем:

Выбора "такого же" предмета,

Воспроизведения (построения) "такого же" предмета по выделенному (указанному) параметру.

Тема II. Сравнение объектов и фиксация его результатов формулой равенства-неравенства.

1. Задачи на сравнение объектов и знаковое обозначение результатов этого действия.

2. Словесная фиксация результатов сравнения (термины "больше", "меньше", "равно"). Письменные знаки ">", "<", "=".

3. Обозначение результата сравнения рисунком ("копирующим", а затем "отвлеченным" - линиями).

4. Обозначение сравниваемых объектов буквами. Запись результата сравнения формулами: А=Б; А<Б, А>B. Буква как знак, фиксирующий непосредственно данное, частное значение объекта по выделенному параметру (по весу, по объему и т.д.).

5. Невозможность фиксации результата сравнения разными формулами. Выбор определенной формулы для данного результата (полная дизъюнкция отношений больше - меньше - равно).

Тема III. Свойства равенства и неравенства.

1. Обратимость и рефлексивность равенства (если А=Б, то Б=А; А=А).

2. Связь отношений "больше" и "меньше" в неравенствах при "перестановках" сравниваемых сторон (если А>Б, то Б<А и т.п.).

3. Транзитивность как свойство равенства и неравенства:

если А=Б, если А>Б, если А<Б,

а Б=В, а Б>В, а Б<В,

то А=В; тo A>B; тo А<В.

4. Переход от работы с предметным дидактическим материалом к оценкам свойств равенства-неравенства при наличии только буквенных формул. Решение разнообразных задач, требующих знания этих свойств (например, решение задач, связанных со связью отношений типа: дано, что А>В, а В=С; узнать отношение между А и С).

Тема IV. Операция сложения (вычитания).

1. Наблюдения за изменениями объектов по тому или иному параметру (по объему, по весу, по длительности и т.д.). Изображение увеличения и уменьшения знаками "+" и "-" (плюс и минус).

2. Нарушение ранее установленного равенства при соответствующем изменении той или иной его стороны. Переход от равенства к неравенству. Запись формул типа:

если А=Б, если А=Б,

то А+К>Б; то А-К<Б.

3. Способы перехода к новому равенству (его "восстановление" по принципу:

прибавление "равного" к "равным" дает "равное").

Работа с формулами типа:

то А+К>Б, но А+К=Б+К.

4. Решение разнообразных задач, требующих применения операции сложения (вычитания) при переходе от равенства к неравенству и обратно.

Тема V. Переход от неравенства типа А<Б к равенству через операцию сложения (вычитания).

1. Задачи, требующие такого перехода. Необходимость определения значения величины, на которую разнятся сравниваемые объекты. Возможность записи равенства при неизвестном конкретном значении этой величины. Способ использования х (икса).

Запись формул типа:

если A<Б, если А>Б,

то A+х=Б; то А-x=B.

2. Определение значения х. Подстановка этого значения в формулу (знакомство со скобками). Формулы типа

3. Решение задач (в том числе и "сюжетно-текстовых"), требующих выполнения указанных операций.

Тема Vl. Сложение-вычитание равенств-неравенств. Подстановка.

1. Сложение-вычитание равенств-неравенств:

если А=Б если А>В если А>В

и М=D, и К>Е, и Б=Г, то A+M=Б+D; то А+К>В+E; то А+-Б>В+-Г.

2. Возможность представления значения величины суммой нескольких значений. Подстановка типа:

3. Решение разнообразных задач, требующих учета свойств отношений, с которыми дети познакомились в процессе работы (многие задачи требуют одновременного учета нескольких свойств, сообразительности при оценке смысла формул; описание задач и решения приведены ниже) .

Такова программа, рассчитанная на 3,5 - 4 мес. первого полугодия. Как показывает опыт экспериментального обучения, при правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий весь изложенный в программе материал может быть полноценно усвоен детьми за более короткий срок (за 3 месяца). Как строится наша программа дальше? Прежде всего дети знакомятся со способом получения числа, выражающим отношение какого-либо объекта как целого (той же величины, представленной непрерывным или дискретным объектом) к его части. Само это отношение и его конкретное значение изображается формулой А/К=n, где n - любое целое число, чаще всего выражающее отношение с точностью до "единицы" (лишь при специальном подборе материала или при сосчитывании лишь "качественно" отдельных вещей можно получить абсолютно точное целое число). Дети с самого начала "вынуждены" иметь в виду, что при измерении или сосчитывании может получиться остаток, наличие которого нужно специально оговаривать. Это первая ступенька к последующей работе с дробным числом. При такой форме получения числа нетрудно подвести детей к описанию объекта формулой типа А=5k (если отношение было равно "5"). Вместе с первой формулой она открывает возможности для специального изучения зависимостей между объектом, основанием (мерой) и результатом счета (измерения), что также служит пропедевтикой для перехода к дробным числам (в частности, для понимания основного свойства дроби). Другая линия развертывания программы, реализуемая уже в I классе, - это перенесение на числа (целые) основных свойств величины (дизъюнкции равенства-неравенства, транзитивности, обратимости) и операции сложения (коммутативности, ассоциативности, монотонности, возможности вычитания). В частности, работая на числовом луче, дети могут быстро претворить последовательность чисел в величину (например, отчетливо оценивать их транзитивность, выполняя записи типа 3<5<8, одновременно связывая отношения "меньше-больше": 5<8, но 5<3, и т.д.) .

Знакомство с некоторыми так сказать "структурными" особенностями равенства позволяет детям иначе подойти к связи сложения и вычитания. Так, при переходе от неравенства к равенству выполняются следующие преобразования: 7<11; 7+х=11; x=11-7; х=4. В другом случае дети складывают и вычитают элементы равенств и неравенств, выполняя при этом работу, связанную с устными вычислениями. Например, дано 8+1=6+3 и 4>2; найти отношение между левой и правой частями формулы при 8+1-4...6+3-2; в случае неравенства привести это выражение к равенству (вначале нужно поставить знак "меньше", а затем приплюсовать к левой части "двойку").

Таким образом, обращение с числовым рядом как с величиной позволяет по-новому формировать сами навыки сложения-вычитания (а затем умножения-деления).

2.1 Обучение в начальной школе с точки зрения потребностей средней школы

Как известно, при изучении математики в 5-м классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Это повторение практически во всех существующих учебниках занимает 1,5 учебной четверти. Такая ситуация сложилась неслучайно. Ее причина - недовольство учителей математики средней школы подготовкой выпускников начальной школы. В чем же причина такого положения? Для этого была проанализированы пять наиболее известных сегодня учебников математики начальной школы. Это учебники М.И. Моро, И.И. Аргинской, Н.Б. Истоминой, Л.Г. Петерсон , , , .

Анализ этих учебников выявил несколько негативных моментов, в большей или меньшей степени присутствующих в каждом из них и отрицательно влияющих на дальнейшее обучение. Прежде всего, это то, что усвоение материала в них в большей мере основано на заучивании. Ярким примером этого служит заучивание таблицы умножения. В начальной школе ее запоминанию уделяется много сил и времени. Но за время летних каникул дети ее забывают. Причина такого быстрого забывания в механическом заучивании. Исследования Л.С. Выготского показали, что осмысленное запоминание гораздо более эффективно, чем механическое, а проведенные впоследствии эксперименты убедительно доказывают, что материал попадает в долговременную память, только если он запомнен в результате работы, соответствующей этому материалу.

Способ эффективного усвоения таблицы умножения был найден еще в 50-х годах. Он состоит в организации определенной системы упражнений, выполняя которые, дети сами конструируют таблицу умножения. Однако не в одном из рассмотренных учебников этот способ не реализован.

Другим негативным моментом, влияющим на дальнейшее обучение, является то, что во многих случаях изложение материала в учебниках математики начальной школы построено таким образом, что в дальнейшем детей придется переучивать, а это, как известно, гораздо труднее, чем учить. Применительно к изучению алгебраического материала примером может служить решение уравнений в начальной школе. Во всех учебниках решение уравнений основано на правилах нахождения неизвестных компонентов действий.

Несколько иначе это сделано лишь в учебнике Л.Г. Петерсон , где, например, решение уравнений на умножение и деление строится на соотнесении компонентов уравнения со сторонами и площадью прямоугольника и в итоге также сводится к правилам, но это правила нахождения стороны или площади прямоугольника. Между тем, начиная с 6-го класса детей учат совершенно другому принципу решения уравнений, основанному на применении тождественных преобразований. Такая необходимость переучивания приводит к тому, что решение уравнений является достаточно сложным моментом для большинства детей.

Анализируя учебники, мы столкнулись еще и с тем, что при изложении материала в них зачастую имеет место искажение понятий. Например, формулировка многих определений дается в виде импликаций, тогда как из математической логики известно, что любое определение - это эквиваленция. В качестве иллюстрации можно привести определение умножения из учебника И.И. Аргинской: "Если все слагаемые в сумме равны между собой, то сложение можно заменить другим действием - умножением" . (Все слагаемые в сумме равны между собой. Следовательно, сложение можно заменить умножением.) Как видно, это импликация в чистом виде. Такая формулировка не только неграмотна с точки зрения математики, не только неправильно формирует у детей представление о том, что такое определение, но она еще и очень вредна тем, что в дальнейшем, например, при построении таблицы умножения авторы учебников используют замену произведения суммой одинаковых слагаемых, чего представленная формулировка не допускает. Такая неправильная работа с высказываниями, записанными в виде импликации, формирует у детей неверный стереотип, который будет с большим трудом преодолеваться на уроках геометрии, когда дети не будут чувствовать разницы между прямым и обратным утверждением, между признаком фигуры и ее свойством. Ошибка, когда при решении задач используется обратная теорема, в то время как доказана только прямая, является очень распространенной.

Другим примером неправильного формирования понятий является работа с отношением буквенного равенства. Например, правила умножения числа на единицу и числа на нуль во всех учебниках даются в буквенном виде: а х 1 = а, а х 0 = 0. Отношение равенства, как известно, является симметричным, а следовательно, подобная запись предусматривает не только то, что при умножении на 1 получается то же число, но и то, что любое число можно представить как произведение этого числа и единицы. Однако словесная формулировка, предложенная в учебниках после буквенной записи, говорит только о первой возможности .

Упражнения по этой теме также направлены только на отработку замены произведения числа и единицы этим числом. Все это приводит не только к тому, что предметом сознания детей не становится очень важный момент: любое число можно записать в виде произведения, - что в алгебре при работе с многочленами вызовет соответствующие трудности, но и к тому, что дети в принципе не умеют правильно работать с отношением равенства. К примеру, при работе с формулой разность квадратов дети, как правило, справляются с заданием разложить разность квадратов на множители. Однако те задания, где требуется обратное действие, во многих случаях вызывают затруднения. Другой яркой иллюстрацией этой мысли служит работа с распределительным законом умножения относительно сложения. Здесь также, несмотря на буквенную запись закона, и его словесная формулировка, и система упражнений отрабатывают только умение открывать скобки. В результате этого вынесение общего множителя за скобки в дальнейшем будет вызывать значительные трудности.

Весьма часто в начальной школе, даже когда определение или правило сформулировано верно, обучение стимулирует опору не на них, а на нечто совершенно другое. Например, при изучении таблицы умножения на 2 во всех рассмотренных учебниках показан способ ее построения. В учебнике М.И. Моро это сделано так:

2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

При таком способе работы дети очень быстро подметят закономерность получающегося числового ряда .

Уже после 3-4 равенств они перестанут складывать двойки и начнут записывать результат, основываясь на подмеченной закономерности. Таким образом, способ конструирования таблицы умножения не станет предметом их сознания, результатом чего будет являться непрочное ее усвоение.

При изучении материала в начальной школе опора делается на предметные действия и иллюстративную наглядность, что ведет к формированию эмпирического мышления. Конечно, без подобной наглядности вряд ли можно совсем обойтись в начальной школе. Но она должна служить лишь иллюстрацией того или иного факта, а не основой для формирования понятия.

Применение иллюстративной наглядности и предметных действий в учебниках нередко приводит к тому, что "размывается" само понятие. Например, в методике математики для 1-3-х классов М.И. Моро говорится, что детям приходится выполнять деление, раскладывая предметы на кучки или делая рисунок на протяжении 30 уроков. За подобными действиями теряется сущность операции деления как действия, обратного умножению. В результате деление усваивается с наибольшим трудом и значительно хуже, чем другие арифметические действия .

При обучении математике в начальной школе нигде не идет речь о доказательстве каких-либо утверждений. Между тем, помня о том, какую трудность будет вызывать обучение доказательству в средней школе, начинать готовить к этому нужно уже в начальных классах. Причем сделать это можно на вполне доступном для младших школьников материале. Таким материалом, например, могут служить правила деления числа на 1, нуля на число и числа на само себя. Дети вполне в состоянии доказать их, используя определение деления и соответствующие правила умножения.

Материал начальной школы также допускает и пропедевтику алгебры - работу с буквами и буквенными выражениями. Большинство учебников избегает использование букв. В результате четыре года дети работают практически только с числами, после чего, конечно, очень трудно приучать их к работе с буквами.

Однако обеспечить пропедевтику такой работы, научить детей подстановке числа вместо буквы в буквенное выражение можно уже в начальной школе. Это сделано, например, в учебнике Л.Г. Петерсон.

Говоря о недостатках обучения математике в начальной школе, мешающих дальнейшему обучению, необходимо особо подчеркнуть тот факт, что зачастую материал в учебниках изложен без взгляда на то, как он будет работать в дальнейшем. Очень ярким примером этого является организация усвоения умножения на 10, 100, 1000 и т.д. Во всех рассмотренных учебниках изложение этого материала построено так, что оно неизбежно приводит к формированию в сознании детей правила: "Чтобы умножить число на 10, 100, 1000 и т.д., нужно справа к нему приписать столько нулей, сколько их в 10, 100, 1000 и т.д." Это правило является одним из тех, которые очень хорошо усваиваются в начальной школе. И это приводит к большому числу ошибок при умножении десятичных дробей на целые разрядные единицы. Даже запомнив новое правило, дети часто автоматически при умножении на 10 приписывают к десятичной дроби справа нуль .

Кроме того, следует отметить, что и при умножении натурального числа, и при умножении десятичной дроби на целые разрядные единицы, по сути дела, происходит одно и то же: каждая цифра числа сдвигается вправо на соответствующее количество разрядов. Поэтому нет смысла учить детей двум отдельным и совершенно формальным правилам. Гораздо полезнее научить их общему способу действий при решении подобных заданий.

2.2 Сравнение (противопоставление) понятий на уроках математики

Действующая программа предусматривает изучение в I классе лишь двух действии первой ступени -- сложения и вычитания. Ограничение первого года обучения лишь двумя действиями есть, по существу, отход от того, что было уже достигнуто в учебниках, предшествовавших ныне действующим: ни один учитель никогда не жаловался тогда на то, что умножение и деление, скажем, в пределах 20 непосильно для первоклассников. Достойно внимания еще и то, что в школах других стран, где обучение начинается с 6 лет, к первому учебному году относят начальное знакомство со всеми четырьмя действиями арифметики.

Математика опирается, прежде всего, на четыре действия, и чем раньше они будут включены в практику мышления школьника, тем устойчивее и надежнее будет последующее развертывание курса математики.

Справедливости ради надо отметить, что в первых вариантах учебников М.И.Моро для I класса предусматривалось умножение и деление. Однако делу помешала случайность: авторы новых программ настойчиво держались за одну "новинку" -- охват в I классе всех случаев сложения и вычитания в пределах 100 (37+58 и 95--58 и т. п.). Но, поскольку времени на изучение такого расширенного объема сведений не хватило, было решено сдвинуть умножение и деление полностью на следующий год обучения.

Итак, увлечение линейностью программы, т. е. чисто количественным расширением знаний (те же самые действия, но с большими числами), заняло то время, которое ранее отводилось на качественное углубление знаний (изучение всех четырех действий в пределах двух десятков). Изучение умножения и деления уже в I классе означает качественный скачок мышления, поскольку это позволяет освоить свернутые мыслительные процессы.

По традиции, раньше выделялось в особую тему изучение действий сложения и вычитания в пределах 20. Необходимость этого подхода в систематизации знаний видна даже из логического анализа вопроса: дело в том, что полная таблица сложения однозначных чисел развертывается в пределах двух десятков (0+1=1, ...,9+9=18). Таким образом, числа в пределах 20 образуют в своих внутренних связях завершенную систему отношений; отсюда понятна целесообразность сохранения "Двадцати" в виде второй целостной темы (первая такая тема -- действия в пределах первого десятка).

Обсуждаемый случай -- именно тот, когда концентричность (сохранение второго десятка в качестве особой темы) оказывается более выгодной, чем линейность ("растворение" второго десятка в теме "Сотня").

В учебнике М. И. Моро изучение первого десятка разделено на два изолированных раздела: сначала изучается состав чисел первого десятка, а в следующей теме рассматриваются действия в пределах 10 . В экспериментальном учебнике П.М. Эрдниева в противовес этому осуществлено совместное изучение нумерации, состава чисел и действий (сложение и вычитание) в пределах 10 сразу в одном разделе. При таком подходе применяется монографическое изучение чисел, а именно: в пределах рассматриваемого числа (например, 3) сразу же постигается вся "наличная математика": 1 + 2 = 3; 2 + 1 = 3; 3 - 1 = 2; 3 - 2 = 1 .

Если по действующим программам на изучение первого десятка отводилось 70 ч, то в случае экспериментального обучения весь этот материал был изучен за 50 ч (причем сверх программы были рассмотрены некоторые дополнительные понятия, отсутствующие в стабильном учебнике, но структурно связанные с основным материалом).

Особого внимания в методике начального обучения требует вопрос о классификации задач, о названиях их типов. Поколения методистов трудились над упорядочением системы школьных задач, над созданием их эффективных типов и разновидностей, вплоть до подбора удачных терминов для названий задач, предусмотренных для изучения в школе. Известно, что не менее половины учебного времени на уроках математики отводится их решению. Школьные задачи, безусловно, нуждаются в систематизации и классификации. Какого вида (типа) задачи изучать, когда изучать, какой их тип изучать в связи с прохождением того или иного раздела -- это законный объект исследования методики и центральное содержание программ. Значимость этого обстоятельства видна из истории методики математики.

Заключение

В настоящее время возникли достаточно благоприятные условия для коренного улучшения постановки математического образования в начальной школе:

1) начальная школа из трехлетней преобразована в четырехлетнюю;

Подобные документы

    Особенности формирования временных представлений на уроках математики в начальной школе. Характеристика величин, изучаемых в начальной школе. Знакомство с методикой формирования временных представлений в начальном курсе математики УМК "Школа России".

    дипломная работа , добавлен 16.12.2011

    Интеграция информатики и математики как главное направление в повышении эффективности обучения. Методика применения программных средств к интерактивным урокам. Отбор учебного материала для электронного обучения математики и информатики в средней школе.

    дипломная работа , добавлен 08.04.2013

    Представление об активных методах обучения, особенности их применения в начальной школе. Классификация активных методов преподавания математики в начальной школе по различным основаниям. Интерактивные методы преподавания математики и их преимущества.

    курсовая работа , добавлен 12.02.2015

    Методика изучения вероятностно-статистической (стохастической) линии в курсе математики основной школы. Анализ восприятия материала учащимися: степень заинтересованности; уровень доступности; трудности при изучении этого материала; качество усвоения.

    дипломная работа , добавлен 28.05.2008

    Сущность и задачи интерактивного обучения в начальной школе. Реализация комплекса методов и приемов интерактивного обучения младших школьников на уроках математики. Выявление динамики уровня сформированности универсальных учебных действий школьников.

    дипломная работа , добавлен 17.02.2015

    Процесс работы над задачей. Виды задач, умение и уровни умения их решать. Методика обучения преобразованию задач.Этапы работы над задачей. Понятие преобразования задачи. Методика обучения и преобразования задачи на уроках математики в начальной школе.

    дипломная работа , добавлен 11.06.2008

    Методика использования заданий исследовательского характера на уроках математики как средства развития мыслительной деятельности младших школьников; систематизация и апробация развивающих упражнений, рекомендации по их использованию в начальной школе.

    курсовая работа , добавлен 15.02.2013

    Особенности изучения математики в начальной школе согласно Федеральному государственному образовательному стандарту начального общего образования. Содержание курса. Анализ основных математических понятий. Сущность индивидуального подхода в дидактике.

    курсовая работа , добавлен 29.09.2016

    Математика как одна из наиболее абстрактных наук, изучаемых в начальной школе. Знакомство с особенностями использования исторического материала на уроках математики в 4 классе. Анализ основных проблем развития познавательной активности школьников.

    дипломная работа , добавлен 10.07.2015

    Рассмотрение психолого-педагогических основ изучения логических задач в начальной школе. Особенности развития логического мышления на уроках математики в начальной школе с позиции требований Федерального Государственного Образовательного Стандарта.

Лекция 7. Понятие периметра многоугольника


1. Методика рассмотрения элементов алгебры.

2. Числовые равенства и неравенства.

3. Подготовка к ознакомлению с переменной. Элементы буквенной символики.

4. Неравенства с переменной.

5. Уравнение

1. Введение элементов алгебры в начальный курс математики позволяет с самого начала обучения вести планомерную работу направленную на формирование у детей таких важнейших математических понятий как: выражение, равенство, неравенство, уравнение. Ознакомление с использованием буквы как символа обозначающего любое число из известной детям области чисел, создает условия для обобщения многих на начальном курсе вопросов арифметической теории, является хорошей подготовкой к ознакомлению детей в дальнейшем с понятиями в переменной функций. Более раннее ознакомление с использованием алгебраического способа решения задач позволяет внести серьезнее усовершенствования во всю систему обучения детей решению разнообразных текстовых задач.

Задачи : 1.Сформировать у учащихся умения читать, записывать и сравнивать числовые выражения.2. Познакомить учащихся с правилами выполнения порядка действий в числовых выражениях и выработать умение вычислять значения выражений в соответствии с этими правилами.3. Сформировать у учащихся умение читать, записывать буквенные выражения и вычислять их значения при данных значениях букв.4. Познакомить учащихся с уравнениями 1-ой степени, содержащее действия первой и второй ступени, сформировать умение решать их способом подбора, а также на основе знания взаимосвязи м/у компонентами и результатом арифметический действий.

Программой начальных классов предусматривается знакомство учащихся с использования буквенной символики, решений элементарных уравнений первой степени с одним неизвестным и применений их к задачам в одно действие. Эти вопросы изучаются в тесной связи с арифметическим материалом, что способствует формированию числа и арифметических действий.

С первых дней обучения начинается работа по формированию у учащихся понятий равенства. Первоначально дети учатся сравнивать множество предметов уравнивать неравные группы, преобразовывать равные группы в неравные. Уже при изучении десятка чисел вводятся упражнения сравнения. Сначала они выполняются с опоры на предметы.

Понятие о выражении формируется у младших школьников в тесной связи с понятиями об арифметических действиях. В методике работы над выражениями предусматривается два этапа. На 1-формируется понятие о простейших выражениях (сумма, разность, произведение, частное двух чисел), а на 2- о сложных (сумма произведения и числа, разность двух частных и т. п.). Вводятся термины «математическое выражение» и «значение математического выражения» (без определений). После записи нескольких примеров в одно действие учитель сообщает, что эти примеры иначе называются метаматематическими выражениями. При изучении арифметических действий включаются упражнения на сравнения выражений, их делят на 3 группы. Изучение правил порядка действий. Цель на данном этапе - опираясь на практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли действия в каждом примере. Затем формулируют сами или читают по учебнику вывод. Тождественное преобразование выражения - это замена данного выражения другим, значение которого равно значению заданного выражения. Учащиеся выполняют такие преобразования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них (как прибавить сумму к числу, как вычесть число из суммы, как умножить число на произведение и др.). При изучении каждого свойства учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется.


2. Числовые выражения с самого начала рассматриваются в неразрывной связи с числовыми равен-ми и неравен-ми. Числовые равенства и неравенства делятся на «верные» и «неверные». Задачи: сравнивать числа, сравнивать арифметические выражения, решать простейшие неравенства с одним неизвестным, переходить от неравенства к равенству и от равенства к неравенству

1. Упражнение, направленное на уточнение знаний учащихся об арифметических действиях и на их применение. При ознакомлении учащихся с арифметическими действиями сравниваются выражение вида 5+3 и 5-3; 8*2 и 8/2. Сначала выражения сравниваются путем нахождения значений каждого и сравнения полученных чисел. В дальнейшем задание выполняется ни основе того, что сумма двух чисел больше их разности, а произведение - больше их частного; вычисление используется только для проверки результата. Сравнение выражений вида 7+7+7 и 7*3 проводится для закрепления знаний учащихся о связи сложения и умножения.

В процессе сравнения учащиеся знакомятся с порядком выполнения арифметических действий. Сначала рассматриваются выражения, содержание скобки, вида 16 - (1+6).

2. После этого рассматривается порядок действий в выражениях без скобок содержащих действия одной и двух степеней. Эти значения учащиеся усваивают в процессе выполнения примеров. Сначала рассматриваются порядок действий в выражениях, содержащих действия одной ступени, например: 23 + 7 - 4 , 70: 7 * 3. При этом дети должны усвоить, что если выражений есть только сложение и вычитания или только умножение и деление, то они выполняются в том порядке в каком записаны. Затем вводятся выражения, содержащие действия обеих ступеней. Учащимся сообщается, что в таких выражениях надо сначала выполнить по порядку действия умножения и деления, а затем сложение и вычитание, например: 21/3+4*2=7+8=15; 16+5*4=16+20=36. Чтобы убедить учащихся в необходимости соблюдения порядка действий, полезно выполнить их в одном и тоже выражении в другой последовательности и сравнить полученные результаты.

3. Упражнения, при выполнении которые учащиеся усваивают и закрепляют знания по соотношению между компонентами и результатами арифметических действий. Они включаются уже при изучении чисел десятка.

В этой группе упражнений учащиеся знакомятся со случаями изменения результатов действий в зависимости от изменения одного из компонентов. Сравниваются выражения, в которых изменяется одно из слагаемых (6+3 и 6+4) или уменьшаемое 8-2 и 9-2 и т.д. Подобные задания включаются также при изучении табличного умножения и деления и выполняются с помощью вычислений (5*3 и 6*3, 16:2 и 18:2) и т.д. В дальнейшем можно сравнивать эти выражения без опоры на вычисления.

Рассмотренные упражнения тесно связаны с программным материалом и способствует его усвоению. Наряду с этим в процессе сравнения чисел и выражений учащиеся получают первые представления о равенстве и неравенстве .

Так, в 1 классе, где ещё термины «равенство» и «неравенство» не используются, учитель может при проверке правильности выполненных детьми вычислений задавать вопросы в такой форме: «Коля прибавил к шести восемь и получил 15. Верное это решение или неверное?», или предлагать детям упражнения в которых требуется проверить решение данных примеров, найти верные записи и т.д. Аналогично при рассмотрении числовых неравенств вида 5<6,8>4 и более сложных учитель может задавать вопрос в такой форме: «Верны ли эти записи?», а после введения неравенства – «Верны ли эти неравенства?».

Начиная с 1 класса дети знакомятся и с преобразованиями числовых выражений, выполняемое на основе применения изученных элементов арифметической теории(нумерации, смысла действий и другое). Например, на основе знания нумерации, разрядного состава чисел учащиеся могут представить любое число в виде суммы его разрядных слагаемых. Это умение используется при рассмотрении преобразования выражений в связи с выражением многих вычислительных приемов.

В связи с подобными преобразованиями уже в I классе дети встречаются с «цепочкой» равенств.

Нас окружают объекты. С первых дней ребенка в школе мы изучаем окружающий мир, в том числе и на уроках математики.

Учебник 1 кл. 1 часть. Что мы видим? Мы изучаем объекты. Что такое понятие об объекте? (это совокупность существенных свойств объекта)

В начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий - одна из условий формирования у учеников твердых знаний об этих понятиях.

При усвоении научных знаний учащиеся начальной школы сталкиваются с разными видами понятий. Неумение ученика дифференцировать понятия приводит к неадекватному их усвоению.

Понятие – это совокупность суждений, мыслей, в которых что-либо утверждается об отличительных признаках исследуемого объекта. Что подразумеваем под объемом понятия? (совокупность объектов, обозначенных одним и тем же термином)

Так, программа обучения «Школа России» исходит из того, что базовыми понятиями начального курса математики являются понятия «числа» и «величины», параллельно рассматриваются алгебраический и геометрический материал, решаются текстовые задачи.

В начальной школе мы начинаем давать первые определения понятий: отрезок, квадрат, луч и т.д. Что такое определение понятия? (логическая операция, раскрывающая содержание понятия)

По объему математические понятия делятся на единичные и общие. Если в объем понятия входит только один предмет, оно называется единичным.

Примеры единичных понятий: «наименьшее двузначное число», «цифра 5», «квадрат, длина стороны которого 10 см», «круг радиусом 5 см».

Общие понятие отображает признаки определенного множества предметов. Объем таких понятий всегда будет больше объема одного элемента.

Примеры общих понятий: «множество двузначных чисел», «треугольники», «уравнения», «неравенства», «числа кратные 5», «учебники математики для начальной школы».

В обучении младших школьников наиболее часто встречаются контекстуальные и остенсивные определенияпонятий .

Любой отрывок из текста, будь какой контекст, в котором случается понятие, которое нас интересует есть, в некотором понимании, неявным его определением. Контекст ставит понятие в связь с другими понятиями и тем самим раскрывает ее содержание.

Например, употребляя в работе с детьми такие выражения, как «найти значения выражения», «сравнить значение выражений 5 + а и (а - 3) × 2, если а = 7», «прочитать выражения, которые являются суммами», «прочитать выражения, и потом прочитать уравнения», мы раскрываем понятие «математическое выражение» как запись, которая складывается из чисел или переменных и знаков действий.

Почти все определения, с которыми мы встречаемся в повседневной жизни - это контекстуальные определения. Услышав, неизвестное слово, мы стараемся сами установить его значение на основании всего сказанного.

Подобное имеет место и в обучении младших школьников. Много математических понятий в начальной школе определяются через контекст. Это, например, такие понятия, как «большой - маленький», «какой-нибудь», «любой», «один», «много», «число», «арифметическое действие», «уравнение», «задача» и т.д.

Контекстуальные определения остаются большей частью неполными и незавершенными. Они применяются в связи с неподготовленностью младшего школьника к усвоению полного и тем более научного определения.

Остенсивные определения - это определения путем демонстрации. Они напоминают обычные контекстуальные определения, но контекстом здесь есть не отрывок какого-либо текста, а ситуация, в которой оказывается объект, обозначенный понятием.

Например, учитель показывает квадрат (рисунок или бумажную модель) и говорит «Смотрите - это квадрат». Это типичное остенсивное определение.

В начальных классах остенсивные определения применяются при рассмотрении таких понятий как «красный (белый, черный и т.д.) цвет», «левый - правый», «слева направо», «цифра», «предшествующее и следующее число», «знаки арифметических действий», «знаки сравнения», «треугольник», «четырехугольник», «куб» и т.д.

На основе усвоения остенсивным путем значений слов есть возможность вводить в словарь ребенка уже вербальное значение новых слов и словосочетаний. Остенсивные определения - и только они - связывают слово с вещами.

Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение».

Какую структуру имеет понятие? (определяемое понятие = родовое + видовое) Приведите пример. В следствии этой формулы и построено изучение математического материала в начальной школе. Например, рассмотрим понятия «квадрат» и «прямоугольник». Объем понятия «квадрат» есть частью объема понятия «прямоугольник». Поэтому первое называют видовым, а второе - родовым. В родо-видовых отношениях следует различать понятие ближайшего рода и следующие родовые ступени.

Например, для вида «квадрат» ближайшим родом будет род «прямоугольник», для прямоугольника ближайшим родом будет род «параллелограмм», для «параллелограмма» - «четырехугольник», для «четырехугольника» - «многоугольник», а для «многоугольника»- «плоская фигура».

В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования (например, при счете их). Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа.

Особое внимание следует уделить понятию число.

Число - это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три - при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления.

Натуральное число рассматривается как общее свойство класса эквивалентных конечных множеств. Первые представления о числе связаны с количественной характеристикой предметов.

(Множество – совокупность некоторых объектов, эквивалентные = равночисленные)

Количественная характеристика множества осознается учащимися в процессе установления взаимно однозначного соответствия между элементами непустого конечного множества и отрезком натурального числового ряда. Такое взаимно однозначное соответствие называется счетом элементов конечного множества. В этом случае количественная характеристика непустых конечных множеств находит выражение в таких отношениях, как «больше», «меньше», «равно», обозначаемых соответствующими символами.

На основе использования предметной наглядности устанавливается, например, что число кругов больше, чем квадратов, а квадратов меньше, чем кругов.


4, следовательно 5 б 4, 4 м 5

Число «нуль» в нач. школе рассматривается как характеристика пустого множества на основе практической деятельности с множеством предметов. Для этой цели используются рисунки типа:

. . .
.
. .

Или на основе результат арифметического действия при рассмотрении примеров вида: 3-1=2, 2-1=1, 1-1=0.

Рассматриваются целые неотрицательные числа в курсе математики начальной школы по концентрам: «Числа от 0 до 10», «Числа от 10 до 100», «Числа от 100 до 1000», «Числа, которые больше 1000».

Основными понятиями в каждом концентре является устная и письменная нумерация.

Устная нумерация – способ называния каждого из чисел, встречающихся в жизненной практике, с помощью слов-числительных: один, девять, сто два и т.д.

Письменная нумерация – способ записи каждого из чисел, встречающихся в жизненной практике, с помощью цифр: 1, 2, 3…9, 0 на основе принципа поместного значения цифр (каждая цифра в зависимости от места, занимаемого им в записи числа, имеет свое определенное значение). Например, в записи числа 999 цифра 9, стоящая на первом месте справа налево, означает в данном числе 9 единиц. Эта же цифра, стоящая на втором месте справа налево, означает, что в числе 9 десятков и т.д.

Арифметические действия +, -, х, : рассматриваются в н.ш. на теоретико-множественной основе.

Сложение целых неотрицательных чисел связано с операцией объединения конечных попарно непересекающихся множеств.

Вычитание натуральных чисел рассматривается на наглядной основе как удаление части конечного множества, являющего подмножеством данного множества.

Умножение целых неотрицательных чисел рассматривается как число элементов в объединении равночисленных попарно непересекающихся множеств.

Деление с теоретико-множественной точки зрения связано с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества. С его помощью решаются две задачи на деление: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) (пр.: 15 яблок лежало на 3 тарелках. Сколько яблок на каждой тарелке?) и отыскивание числа таких подмножеств (деление по содержанию) (пр.: 15 яблок лежало на тарелках. На каждой тарелке лежало по 5 яблок. Сколько тарелок стояло на столе?).

Формирование у учащихся представлений о числе и десятичной системе счисления тесно связано с изучением величин.

Величина – это некоторое свойство множества предметов или явлений.

Величина – это такое свойство предметов или явлений, которое позволяет сравнить и установить пары объектов, обладающих этим свойством в равной или неравной мере.

В н.ш. рассматриваются такие величины, как длина, площадь, время, объем, масса.

Длина – величина, характеризующая протяженность, удаленность и перемещение тел или их частей вдоль заданной линии. Длина отрезка или прямой – это расстояние между его концами, измеренное каким-либо отрезком, принятым за единицу измерения длины.

Площадь – величина, характеризующая геометрические фигуры на плоскости и определяемая числом заполняющих плоскую фигуру единичных квадратов, т.е. квадратов со стороной, равной единицы длины. Измерить площадь фигуры – значит установить, столько квадратных единиц длины (кв. см, кв.дм, кв.м и т.д.) она содержит.

Объем, вместимость – это величина, характеризующая геометрические тела и определяемая в простейших случаях числом умещающихся в тело единичных кубов, т.е. кубов с ребром, равным единице длины. Тела могут иметь одинаковые (т.е. тела равновеликие) и разные объемы.

Масса – это физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Сравнение масс тел , действий над ними сводится к сравнению и действиям над числовыми значениями масс при одной и той же единице измерения массы.

Время – величина, характеризующая последовательную смену явлений и состояний материи, длительность бытия. Календарь - система счета дней, месяцев, годов. В математике время рассматривают как скалярную величину (величина, каждое значение которой может быть выражено одним действительным числом), т.к. промежутки времени обладают свойствами, похожими на свойства длины, площади, массы. Промежутки времени так же, как и другие скалярные величины, можно сравнивать, складывать, вычитать, умножать и делить на положительное действительное число. Между величинами одного рода имеют место отношения: «больше», «меньше», «равно».

На наглядной основе вводятся понятия о доле величины и дроби. Доля рассматривается как одна из равных частей целого. Дробь определяется как пара натуральных чисел (а, n ), характеризующая множество А одинаковых долей единицы; первое из них а показывает, сколько «n- ых» долейсодержит А и называется числителей дроби, второе n – на сколько одинаковых долей разделена единица и называется знаменателем дроби.

Параллельно с арифметическим материалом и изучением величин рассматривается теоретический материал: коммутативное свойство сложения и умножения (переместительное); сочетательное свойство умножения и сложения (ассоциативное), распределительное свойство деления относительно суммы и разности; распределительное свойство деления относительно суммы и разности; дистрибутивное свойство умножения относительно сложения и вычитания – рассматриваются как правила умножения суммы (разности) на число (a + b) x c = a x c + b x c . Кроме того, рассматривается зависимость между компонентами и результатом арифметического действия. Позднее на основе этой зависимости рассматривается решение уравнений.

В школьной практике многие учителя добиваются от учеников заучивания определений понятий и требуют знания их основных доказываемых свойств. Однако результаты такого обучения обычно незначительны. Это происходит потому, что большинство учащихся, применяя понятия, усвоенные в школе, опираются на малосущественные признаки, существенные же признаки понятий ученики осознают и воспроизводят только при ответе на вопросы, требующие определения понятия. Часто учащиеся безошибочно воспроизводят понятия, то есть обнаруживают знание его существенных признаков, но применить эти знания на практике не могут, опираются на те случайные признаки, выделенные благодаря непосредственному опыту. Процессом усвоения понятий можно управлять, формировать их с заданными качествами.

Более подробно остановимся на поэтапном формировании понятий.

После выполнения пяти-восьми заданий с реальными предметами или моделями учащиеся без всякого заучивания запоминают и признаки понятия, и правило действия. Затем действие переводится во внешнеречевую форму, когда задания даются в письменном виде, а признаки понятий, правило, и предписание называются или записываются учащимися по памяти. На этом этапе учащиеся могут работать парами, поочередно выступая то в роли исполнителя, то в роли контролера.

В том случае, когда действие легко и верно выполняется во внешнеречевой форме, его можно перевести во внутреннюю форму. Задание дается в письменном виде, а воспроизведение признаков, их проверку, сравнение полученных результатов с правилом учащийся совершает про себя. Учащийся все еще получает указания типа «Назови про себя первый признак», «Проверь, есть ли он» и т.д. Вначале контролируется правильность каждой операции и конечного ответа. Постепенно контроль осуществляется лишь по конечному результату и производится по мере необходимости.

Если действие выполняется правильно, то его переводят на умственный этап: учащийся сам и выполняет, и контролирует действие. В программе обучения на этом этапе предусматривается контроль со стороны обучающего только за конечным продуктом действия; обучаемый получает обратную связь при наличии затруднений или неуверенности в правильности результата. Процесс выполнения теперь скрыт, действие стало полностью умственным, идеальным, но содержание его известно обучающему, так как он сам его строил и сам преобразовал из действия внешнего, материального.

Так постепенно происходит преобразование действия по форме. Преобразование действия по обобщенности обеспечивается специальным подбором заданий. При этом учитывается как специфическая, так и общелогическая часть ориентировочной основы действия.

Для обобщения специфической части, связанной с применением системы необходимых и достаточных признаков, даются для распознавания все типичные виды объектов, относящихся к данному понятию. Так, при формировании понятия угол важно, чтобы учащиеся поработали с углами, отличающимися по величине (от 0° до 360° и больше), по положению в пространстве и т.п. Кроме того, важно взять и такие объекты, которые имеют лишь некоторые признаки данного понятия, но к нему не относятся.

Для обобщения логической части действия распознавания даются для анализа все основные случаи, предусмотренные логическим правилом подведения под понятие, т.е. задания с положительным, отрицательным и неопределенным ответами. Можно включать также задания с избыточными условиями. Характерно, что в практике обучения, как правило, дается лишь один тип задач: с достаточным составом условий и положительным ответом. В результате учащиеся усваивают действие распознавания в недостаточно обобщенном виде, что, естественно, ограничивает пределы его применения. Задачи с избыточными, неопределенными условиями дают возможность научить учащихся не только обнаруживать те или иные признаки в предметах, но и устанавливать достаточность их для решения стоящей задачи. Последние в жизненной практике часто выступают как самостоятельная проблема.

Преобразование действия по двум другим свойствам достигается повторяемостью однотипных заданий. Делать это целесообразно, как было указано, лишь на последних этапах. На всех других этапах дается лишь такое число заданий, которое обеспечивает усвоение действия в данной форме. Задерживать действие на переходных формах нельзя, так как это приведет к автоматизации его в данной форме, что препятствует переводу действия в новую, более позднюю форму.