Презентация к уроку по физике (9 класс) на тему: Распространение колебаний в упругих средах. Волны


Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде называется волновым процессом или волной. Частицы среды, в которой распро-страняется волна, не вовлекаются волной в поступательное движение. Они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь со-стояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества .

В зависимости от направления колебаний частиц по отношению

к направлению, в котором распространяется волна, различают про-

дольные и поперечные волны.

Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Продоль-ные волны связаны с объемной деформацией растяжения − сжатия среды, поэтому они могут распространяться как в твердых телах, так и

в жидкостях и газообразных средах.

x ляться деформации сдвига. Этим свойст-вом обладают только твердые тела.

λ На рис. 6.1.1 представлена гармони-

висимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны. Длина волны также равна тому расстоянию,на которое рас-пространяется определенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометриче-ское место точек, до которых доходят колебания к моменту времени t , называется фронтом волны . Фронт волны представляет собой ту по-верхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, назы-вается волновой поверхностью . Волновую поверхность можно провес-ти через любую точку пространства, охваченного волновым процес-сом. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно вол-на в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество парал-лельных друг другу плоскостей, а в сферической − множество концен-трических сфер.

Уравнение плоской волны

Уравнением плоской волны называется выражение, которое да-ет смещение колеблющейся частицы как функцию ее координат x , y , z и времени t

S = S (x , y , z ,t ). (6.2.1)

Эта функция должна быть периодической как относительно времени t , так и относительно координат x , y , z . Периодичность по времени вытекает из того, что смещение S описывает колебания час-тицы с координатами x , y , z , а периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Предположим, что колебания носят гармонический характер, а ось 0х совпадает с направлением распространения волны. Тогда вол-новые поверхности будут перпендикулярны оси 0х и, поскольку все

точки волновой поверхности колеблются одинаково, смещение S бу-дет зависеть только от координаты х и времени t

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х . Для того, чтобы пройти путь от плоско-сти х = 0 до плоскости х , волне требуется время τ = x /υ. Следователь-но, колебания частиц, лежащих в плоскости х , будут отставать по времени на τ от колебаний частиц в плоскости х = 0 и описываться уравнением

S ( x ; t )= A cosω( t − τ)+ϕ = A cos ω t x . (6.2.4)
υ

где А − амплитуда волны; ϕ 0 − начальная фаза волны (определяется выбором начал отсчета х и t ).

Зафиксируем какое-либо значение фазы ω(t x υ) +ϕ 0 = const .

Это выражение определяет связь между временем t и тем местом х , в котором фаза имеет фиксированное значение. Продифференцировав данное выражение, получим

Придадим уравнению плоской волны симметричный относи-

тельно х и t вид. Для этого введем величину k = 2 λ π , которая называ-

ется волновым числом , которое можно представить в виде

Мы предполагали, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия вол-ны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника коле-баний постепенно уменьшается, т. е. наблюдается затухание волны. В однородной среде такое затухание происходит по экспоненциальному

закону A = A 0 e −β x . Тогда уравнение плоской волны для поглощающей среды имеет вид

где r r − радиус-вектор, точки волны; k = k n r − волновой вектор ; n r − единичный вектор нормали к волновой поверхности.

Волновой вектор −это вектор,равный по модулю волновомучислу k и имеющий направление нормали к волновой поверхности на-

зывается.
Перейдем от радиус-вектора точки к ее координатам x , y , z
r r (6.3.2)
k r = k x x + k y y + k z z .
Тогда уравнение (6.3.1) примет вид
S (x , y , z ; t )= A cos(ω t k x x k y y k z z +ϕ 0). (6.3.3)

Установим вид волнового уравнения. Для этого найдем вторые частные производные по координатам и времени выражение (6.3.3)

∂ 2 S r r
t = −ω A cos t k r +ϕ 0) = −ω S ;
∂ 2 S r r
x = − k x A cos(ω t k r +ϕ 0) = −k x S
. (6.3.4)
∂ 2 S r r
y = − k y A cos t k r +ϕ 0) = −k y S ;
∂ 2 S r r
z = − k z A cos(ω t k r +ϕ 0) = −k z S
Сложив производные по координатам, и с учетом производной
по времени, получим
2 2 2 2
S 2 + S 2 + S 2 = − (k x 2 + k y 2 + k z 2)S = − k 2 S = k S 2 . (6.3.5)
t
x y z ω
2
Произведем замену k = ω 2 = и получим волновое уравнение
ω υ ω υ
∂ 2 S + ∂ 2 S + ∂ 2 S = 1 ∂ 2 S или S = 1 ∂ 2 S , (6.3.6)
x 2 y 2 z 2 υ 2 ∂t 2 υ 2 ∂t 2
где = ∂ 2 + ∂ 2 + ∂ 2 − оператор Лапласа.
x 2 y 2 z 2

Лекция № 9

Механические волны

6.1. Распространение колебаний в упругой среде .

6.2. Уравнение плоской волны .

6.3. Волновое уравнение .

6.4. Скорость распространения волн в различных средах .

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде принято называть волновым процессом или волной. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение. они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. По этой причине основным свойством всœех волн, независимо от их природы, является перенос энергии без переноса вещества .

Учитывая зависимость отнаправления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны.

продольной , если колебания частиц среды происходят в направлении распространения волны. Продольные волны связаны с объемной деформацией растяжения − сжатия среды, в связи с этим они могут распространяться как в твердых телах, так и в жидкостях и газообразных средах.

Упругая волна принято называть поперечной , если колебания частиц среды происходят в плоскостях, перпендикулярных к направлению распространения волны Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела.

На рис. 6.1.1 представлена гармоническая поперечная волна, распространяющаяся вдоль оси 0х . График волны дает зависимость смещения всœех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, принято называть длиной волны. Длина волны также равна тому расстоянию, на ĸᴏᴛᴏᴩᴏᴇ распространяется определœенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометрическое место точек, до которых доходят колебания к моменту времени t , принято называть фронтом волны . Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, принято называть волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности бывают любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях принято называть плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, а в сферической − множество концентрических сфер.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Тема урока: Распространение колебаний в упругих средах. Волны

Плотной средой называют такую среду, которая состоит из большого числа частиц, взаимодействие которых очень близко к упругому

Процесс распространения колебаний в упругой среде с течением времени называется механической волной.

Условия возникновения волны: 1. Наличие упругой среды 2. Наличие источника колебаний – деформации среды

Механические волны могут распространяться только в какой- нибудь среде (веществе): в газе, в жидкости, в твердом теле. В вакууме механическая волна возникнуть не может.

Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды.

ВОЛНЫ продольные поперечные

Продольные – волны, в которых колебания происходят вдоль направления распространения. Возникают в любой среде (жидкости, в газах, в тв. телах).

Поперечные – в которых колебания происходят перпендикулярно направлению движения волны. Возникают только в твердых телах.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды небольшой мяч, то можно увидеть, что он движется, покачиваясь на волнах, по круговой траектории

Энергия волны Бегущая волна - волна, где происходит перенос энергии без переноса вещества.

Волны цунами. Вещество не переносится волной, но волна переносит такую энергию, которая приносит большие бедствия.


По теме: методические разработки, презентации и конспекты

Методическая разработка урока физики ФИО: Распопова Татьяна НиколаевнаДолжность: учитель физикиНазвание образовательного учреждения: МКОУ Джогинская СОШКласс: 8Раздел программы: «Колебания...

Презентация у уроку физики в 8 классе на тему «Звуковые волны в различных средах». Включает в себя различные виды деятельности на уроке. Это повторение, самостоятельную работу, доклады, эксперим...

Урок "Распространение света в однородной среде"

Учащиеся должны познакомиться с законом прямолинейного рас­пространения света; с понятиями «точечный источник света» и «тень»...

Уравнение свободных гармонических колебаний в контуре. Математическое описание колебаний

Данную работу можно использовать при изучении темы в 11 классе: «Электромагнитные колебания». Материал предназначен для объяснения новой темы и повторения....

Представляем вашему вниманию видеоурок по теме «Распространение колебаний в упругой среде. Продольные и поперечные волны». На этом уроке мы будем изучать вопросы, связанные с распространением колебаний в упругой среде. Вы узнаете, что такое волна, как она появляется, чем она характеризуется. Изучим свойства и отличия продольных и поперечных волн.

Мы переходим к изучению вопросов, связанных с волнами. Поговорим о том, что такое волна, как она появляется и чем характеризуется. Оказывается, помимо просто колебательного процесса в узкой области пространства, возможно еще и распространение этих колебаний в среде, именно такое распространение и есть волновое движение.

Перейдем к обсуждению этого распространения. Чтобы обсудить возможность существования колебаний в среде, мы должны определиться с тем, что такое плотная среда. Плотной средой называют такую среду, которая состоит из большого числа частиц, взаимодействие которых очень близко к упругому. Представим следующий мысленный эксперимент.

Рис. 1. Мысленный эксперимент

Поместим в упругую среду шар. Шар будет сжиматься, уменьшаться в размерах, а потом расширяться наподобие биения сердца. Что в этом случае будет наблюдаться? В этом случае частицы, которые прилегают вплотную к этому шару, будут повторять его движение, т.е. удаляться, приближаться - тем самым будут совершать колебания. Поскольку эти частицы взаимодействуют с другими более удаленными от шара частицами, то они также будут совершать колебания, но с некоторым запаздыванием. Частицы, которые к этому шару прилегают вплотную, совершают колебания. Они будут передаваться другим частицам, более далеким. Таким образом, колебание будет распространяться по всем направлениям. Обратите внимание, в данном случае произойдет распространение состояния колебаний. Такое распространение состояния колебаний мы и называем волной. Можно сказать, что процесс распространения колебаний в упругой среде с течением времени называется механической волной.

Обратите внимание: когда мы говорим о процессе возникновения таких колебаний, надо говорить о том, что они возможны, только если существует взаимодействие между частицами. Другими словами, волна может существовать только тогда, когда есть внешняя возмущающая сила и силы, которые противостоят действию силы возмущения. В данном случае это силы упругости. Процесс распространения в данном случае будет связан с тем, какова плотность и сила взаимодействия между частицами данной среды.

Отметим еще одну вещь. Волна не переносит вещества . Ведь частицы совершают колебания возле положения равновесия. Но вместе с тем волна переносит энергию. Этот факт можно проиллюстрировать волнами цунами. Вещество не переносится волной, но волна переносит такую энергию, которая приносит большие бедствия.

Поговорим о типах волн. Существуют две разновидности - волны продольные и поперечные. Что такое продольные волны ? Эти волны могут существовать во всех средах. И пример с пульсирующим шаром внутри плотной среды - это как раз пример образования продольной волны. Такая волна представляет собой распространение в пространстве с течением времени. Вот это чередование уплотнения и разряжения и представляет собой продольную волну. Еще раз повторюсь, что такая волна может существовать во всех средах - жидких, твердых, газообразных. Продольной называется волна, при распространении которой частицы среды совершают колебания вдоль направления распространения волны.

Рис. 2. Продольная волна

Что касается поперечной волны, то поперечная волна может существовать только в твердых телах и на поверхности жидкости. Поперечной называется волна, при распространении которой частицы среды совершают колебания перпендикулярно направления распространения волны.

Рис. 3. Поперечная волна

Скорость распространения продольных и поперечных волн разная, но это уже тема следующих уроков.

Список дополнительной литературы:

А так ли хорошо знакомо вам понятие волна? // Квант. — 1985. — №6. — С. 32-33. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

§ 1 Распространение колебаний в среде. Продольные и поперечные волны

Рассмотрим, каким образом распространяются колебания в различных средах. Часто вы могли наблюдать, как от поплавка или от брошенного камня по воде расходятся круги. Колебания, создающие в пространстве деформацию среды, могут стать источником, например, волн землетрясений, морских волн или звука. Если рассматривать звук, то колебания производят как источник звука (струна или камертон), так и приемник звука, например, мембрана микрофона. Колебания совершает и собственно среда, через которую идет волна.

Процесс распространения колебаний в пространстве с течением времени называется волной. Волны - это возмущения, распространяющиеся в пространстве, удаляющиеся от места их возникновения.

Следует отметить, что распространение механических волн возможно только в газовой, жидкой и твердой средах. Механическая волна никак не может возникнуть в вакууме.

Твердые, жидкие, газообразные среды состоят из отдельных частиц, взаимодействующих между собой силами связи. Возбуждение колебаний частиц данной среды в одном месте вызывает вынужденные колебания соседних частиц, те, в свою очередь, возбуждают колебания следующих и т.д.

Существуют продольные и поперечные волны.

Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны.

Продольную волну можно увидеть на примере с мягкой длинной пружиной: сжимая и отпуская один из ее концов (другой конец закреплен), мы вызовем последовательное движение сгущений и разрежений ее витков.

Иными словами, наблюдаем, как от одного ее конца к другому идет возмущение, вызванное изменением силы упругости, скорости движения или ускорения витков пружины, смещением витков от линии равновесия. На данном примере мы видим бегущую волну.

Бегущая волна - это волна, которая при перемещении в пространстве переносит энергию без переноса вещества.

а) исходное состояние; б) сжатие пружины; в) передача колебаний от одного витка к другому (сгущение и разряжение витков).

В механике изучают так называемые упругие волны.

Среда, частицы которой связаны между собой так, что изменение положения одной из них ведёт к изменению положения других частиц, называется упругой.

Волна называется поперечной, если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны.

Если натянуть горизонтально резиновый шнур, один его конец жестко закрепить, а другой привести в вертикальное колебательное движение, то сможем наблюдать поперечную волну.

Для эксперимента смоделируем цепочки из пружинок и шариков и на этой модели проанализируем движение продольных и поперечных волн.

В случае продольной волны (а) шарики смещаются вдоль, а пружинки или растягиваются, или сжимаются, то есть возникает деформация сжатия или растяжения. Необходимо помнить, что в жидкой и газовой среде подобной деформации сопутствует уплотнение среды или ее разрежение.

Если шарик сместить перпендикулярно цепочке (б), то возникнет так называемая деформация сдвига. В этом случае мы увидим движение поперечной волны. Следует запомнить, что в жидкости и газообразной среде невозможна деформации сдвига.

Поэтому имеет место следующее определение.

Продольные механические волны могут распространяться в любых средах: жидких, газообразных и твердых. Поперечные волны могут существовать только в твердых средах.

§ 2 Краткие итоги по теме урока

Распространение механических волн возможно только в газовой, жидкой и твердой средах. Механическая волна никаким образом не может возникнуть в вакууме.

Существуют продольные и поперечные волны. Продольные механические волны могут распространяться в любых средах: жидких, газообразных и твердых. Поперечные волны могут существовать только в твердых средах.

Список использованной литературы:

  1. Физика. Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. - 4-е изд. - М.: Большая Российская энциклопедия, 1999. - С. 293-295.
  2. Иродов И. Е. Механика. Основные законы / И.Е. Иродов. – 5-е изд., испр.–М.: Лаборатория базовых знаний, 2000, С. 205–223.
  3. Иродов И. Е. Механика колебательных систем / И.Е. Иродов. – 3-е изд., испр.–М.: Лаборатория базовых знаний, 2000, С. 311–320.
  4. Перышкин А.В. Физика. 9 класс: учебник / А.В. Перышкин, Е.М. Гутник. – М.: Дрофа, 2014. – 319с. Сборник тестовых заданий по физике, 9 класс. /Е.А.Марон, А.Е.Марон. Издательство «Просвещение», Москва, 2007 год.

Использованные изображения: