Принципы автоматизации холодильных установок. Приборы автоматики холодильных машин Давления кипения и кон­денсации хладагента


ЛЕКЦИЯ 9

Тема «КИП и автоматика холодильной машины»

Цель: Изучить устройство и принцип действия контрольно-измерительных приборов и приборов автоматики холодильных машин вагонов

1. Холодильные машины и установки конддиционированяе воздуха. Пигарев В.Е., Архипов П.Е. М., Маршрут, 2003.

2. Обучающая контролирующая программа «Кондиционирование воздуха в пассажирском вагоне».

План лекции:

1. Принципы автоматизации холодильных установок.

2. Основные понятия об автоматическом регулировании

приборов автоматики.

4. Регуляторы заполнения испарителя хладагентом.

Принципы автоматизации холодильных установок

Параметры окружающей среды - температура, влажность, направление и сила ветра, осадки, солнечная радиация непрерывно изменяются в течение суток, а также вследствие быстрого перемещения вагона. Соответственно изменяется и тепловая нагрузка на вагон. Чтобы в этих условиях поддерживать стабильные параметры воздуха внутри вагона, необходимо непрерывно изменять производительность системы охлаждения (летом) или отопления (зимой), а если это необходимо, то и производительность системы вентиляции. Следовательно, как бы совершенны ни были сами по себе системы вентиляции, отопления, охлаждения и электроснабжения и как бы хорошо ни были согласованы их параметры между собой и с тепловыми нагрузками на вагон, установка кондиционирования воздуха не сможет обеспечить комфортных условий в вагоне, если её управление не будет автоматизировано, а холодильная машина обеспечивать требуемую тепловую обработку скоропортящегося груза и поддерживавать заданный температурный режим охлаждаемого помещения. На рефрижераторном подвижном составе применяются холодильные установки, автоматизированные полностью или частично. Степень автоматизации холодильной установки выбирается в зависимости от ее конструкции, размеров и условий эксплуатации. В полностью автоматизированных установках пуск, отключение машин и регулирование холодопроизводительности осуществляются автоматически без вмешательства обслуживающего персонала. Такими установками оборудованы АРВ и секции ZB -5. Для полной автоматизации требуются большие первоначальные затраты и последующие расходы на обслуживание сложных аппаратов и приборов. Однако полная автоматизация холодильных установок АРВ позволила отказаться от сопровождения вагонов в пути следования обслуживающим персоналом и перейти на периодическое их техническое обслуживание на специализированных пунктах (ПТО АРВ).

При эксплуатации частично автоматизированных холодильных установок необходимо постоянное дежурство обслуживающего персонала. Наличие персонала позволяет отказаться от автоматизации включения и выключения холодильной машины, процесса оттаивания воздухоохладителя и др. В результате достигается значительное снижение первоначальных затрат. Защитная же автоматика в таких машинах должна предусматриваться в полном объеме, как и для полностью автоматизированной установки.


Из частично автоматизированных установок условно выделяют полуавтоматизированные установки, в которых включение и выключение оборудования выполняет вручную механик, а поддержание установленного режима работы осуществляют приборы автоматики. К полуавтоматизированным холодильным установкам относятся установки 5- вагонной секции БМЗ.

Автоматизированные холодильные установки всегда работают в оптимальном режиме. Это позволяет сократить время достижения требуемой температуры в грузовом помещении, увеличить за счет этого межремонтные сроки эксплуатации оборудования и снизить расход электроэнергии. Автоматизированная холодильная установка точнее поддерживает заданный температурный режим в охлаждаемом помещении, чего невозможно достигнуть при ручном регулировании. Это позволяет сохранить качество перевозимых грузов и уменьшить их потери при транспортировке. Система автоматизации надежно защищает холодильную установку от опасных режимов работы, увеличивая срок ее службы и обеспечивая безопасность для обслуживающего персонала. Автоматизация повышает культуру производства, улучшает и облегчает условия труда обслуживающего персонала. Практически обязанности поездной бригады сводятся к периодическим осмотрам и проверкам режима работы оборудования и к устранению выявленных неисправностей. Естественно, системы автоматики различны. Применительно к системам автоматики установки кондиционирования воздуха можно классифицировать по трем признакам: по регулируемым параметрам воздуха: по температуре или по влажности, или по обоим этим параметрам, т.е. по теплосодержанию; по характеру процесса обработки воздуха: мокрые камеры увлажнения и осушки с непосредственным разбрызгиванием и фильт189 рацией паровоздушной смеси, или камеры со смачиванием поверхности и также непосредственным тепломассообменом, или камеры с применением теплообмена через холодную (или горячую) стенку, охлаждаемую холодной водой или рассолом (нагреваемую горячей водой или рассолом), или камеры с воздухоохладителями непосредственного охлаждения, или камеры с твердыми или жидкими влагопоглотителями - адсорбентами; по схеме обработки воздуха: прямоточные камеры (без использования рециркуляции), или камеры с постоянной или переменной величиной первичной рециркуляции, или камеры с двойной рециркуляцией постоянной или переменной. Специальное устройство для регулирования влажности (специальная осушка воздуха осуществляется более глубоким его охлаждением, чем необходимо для поддержания температурного режима с последующим подогревом) в вагонных установках кондиционирования воздуха не применяется. Летом, когда требуется осушка воздуха, она выполняется одновременно с процессом его охлаждения в воздухоохладителе. Зимой, когда необходимо увлажнение воздуха, оно осуществляется за счет влаговыделения пассажиров. Таким образом, по первому признаку процесс автоматического регулирования работы вагонных установок кондиционирования является наиболее простым и сводится к поддержанию температуры в помещениях вагона в заданных пределах. Мокрые камеры, твердые и жидкие адсорбенты, теплообмен с помощью водяного или рассольного охлаждения в пассажирских вагонах не применяются. Из этого следует, что и по второму признаку системы автоматики вагонных кондиционеров довольно просты. Ни переменная, ни тем более двойная рециркуляция как постоянная, так и переменная, в вагонах не применяется. Наличие рециркуляции с постоянным соотношением наружного и рециркуляционного воздуха усложняет лишь систему вентиляции, не внося каких-либо из-менений в систему автоматического управления. Таким образом, и по третьему признаку, а значит, и в целом системы автоматики установок кондиционирования пассажирских вагонов по сравнению с системами автоматики других кондиционеров как комфортных, так и технологических, являются относительно простыми. Для поддержания температуры в охлаждаемом помещении в заданном интервале приходится регулировать холодопроизводительность установки, рассчитанную на максимальную потребность в холоде. Регулиро-вание может быть плавным или позиционным (ступенчатым).

Плавное регулирование можно выполнить: плавным изменением частоты вращения вала компрессора; перепуском (байлансированием) пара из нагнетательной линии во всасывающую; изменением рабочего объема компрессора (в винтовых компрессорах); открытием всасывающего клапана на части хода поршня и др. Многие из перечисленных выше способов применяются редко из-за сложности их конструкционного осуществления или из-за значительных энергетических потерь.

Позиционное регулирование можно выполнять изменением коэффициента рабочего времени, т.е. изменением продолжительности работы холодильной установки за цикл. Этот способ широко применяется в системах с большой тепловой аккумулирующей способностью. Позиционное регулирование выполняется также ступенчатым изменением частоты вращения коленчатого вала компрессора, используя многоскоростные электродвигатели. Частоту вращения вала электродвигателя изменяют переключением полюсов статора. На рефрижераторном подвижном составе применяется регулирование холодопроизводительности изменением коэффициента рабочего времени. Цикличная работа холодильной установки достигается периодическими ее включениями и выключениями. Отношение времени работы холодильной установки р к общей продолжительности цикла называется коэффициентом рабочего времени: b = р/ .

Коэффициент рабочего времени можно также определить как отношение теплопритоков в охлаждаемое помещение Q т к холодопроизводительности установки Q 0, т.е. b = Qт /Q 0.

Температуру в охлаждаемом помещении рефрижераторных вагонов обычно регулируют периодическими включениями и отключениями холодильной установки с помощью двухпозиционного автоматического прибора - термостата (реле температуры). При цикличной работе температура в охлаждаемом помещении не остается постоянной, а изменяется в определенных пределах, которые зависят от настройки дифференциала термостата. При увеличении дифференциала продолжительность цикла и пределы колебания температуры увеличиваются. Когда температура в охлаждаемом помещении достигнет верхнего установленного предела, термостат включит холодильную установку. После того как температура в охлаждаемом помещении достигнет нижнего предела, термостат подает электрический импульс на отключение установки. При увеличении теплопритоков в вагон продолжительность работы установки повышается.

2. Основные понятия

об автоматическом регулировании

Система автоматического управления - это совокупность объекта управления и управляющего устройства, осуществляющих какой-нибудь процесс полностью или частично без вмешательства обслуживающего персонала. Объект управления - комплекс технических элементов, выполняющих основную технологическую задачу - характеризуется значениями некоторых величин на его входе и выходе. Если в качестве объекта управления рассматривать рефрижераторный вагон, то величиной на выходе будет температура в грузовом помещении t ваг, а величиной на входе - холодопроизводительность холодильной машины Q 0. Величину на выходе, которую требуется поддерживать в определенном интервале, называют регулируемым параметром и обозначают X 0. Величина на входе объекта - это параметр, с помощью которого управляют значением величины на выходе. Внешнее воздействие на объект управления, вызывающее отклонение регулируемого параметра от исходного значения Х 0, называется нагрузкой. В данном случае это будут теплопритоки в вагон Q н. Действительное значение регулируемого параметра X под воздействием нагрузки Q н отклоняется от заданного значения X 0. Такое отклонение называется рассогласованием: Х=Х – X 0. Воздействие на объект, которое уменьшает рассогласование Х, является регулирующим воздействием. В нашем примере это будет холодопроизводительность машины Q 0. Если Q 0 = Qн , то Х = 0, а регулируемый параметр не изменяется: Х 0 - const.

Устройство, воспринимающее рассогласование АХ и воздействующее на объект для уменьшения рассогласования, называется автоматическим регулятором, или просто регулятором.

Объект и регулятор образуют систему автоматического регулирования (рис. 1).

Рис. 1. Система автоматического регулирования

Регулирование может выполняться по нагрузке и рассогласованию. В первом случае регулятор

воспринимает изменение нагрузки и на столько же изменяет регулирующее воздействие, поддерживая равенство Q 0 = Qн . Однако проще следить за отклонением регулируемого параметра Х 0, т.е. изменять регулирующее воздействие Q 0 в зависимости от значения Х.

Системы автоматизации различаются по своему назначению: управления, сигнализации, защиты, регулирования и комбинированные. Между собой они отличаются составом элементов и связями между, ними. Структурная схема автоматической системы определяет, из каких звеньев она состоит. Например, в систему автоматического регулирования входят объект регулирования и автоматический регулятор, состоящий из нескольких элементов - чувствительного элемента, задающего устройства, элемента сравнения, регулирующего органа и т.д. На рис. 2 показана простая одноконтурная система автоматического регулирования, широко применяющаяся при автоматизации холодильных установок. Работа объекта характеризуется параметром X на выходе, по которому ведется регулирование. На объект воздействует внешняя нагрузка Q н. Управление осуществляется регулирующим воздействием Q 0. Автоматический регулятор должен так изменять величину Q 0, чтобы значение X. соответствовало заданному Х 0. В системе имеются цепи прямой и обратной связи. Цепь прямой связи служит для формирования и передачи к объекту регулирующего воздействия Q 0; по цепи обратной связи поступает информация о ходе процесса. В цепь прямой связи входят усилитель (У), исполнительный механизм (ИМ) и регулирующий орган (РО). В цепь обратной связи включен чувствительный элемент (ЧЭ).

Рис. 2. Структурная схема автоматического регулирования

Обе цепи замыкаются элементом сравнения (ЭС). В регуляторе могут не применяться отдельные элементы (усилитель, исполнительный механизм). Некоторые детали могут выполнять функции нескольких элементов.

Система работает следующим образом. Чувствительным элементом регулятор воспринимает регулируемый параметр X и преобразует его в величину Х 1, удобную для дальнейшей передачи.

Эта преобразованная величина поступает в элемент сравнения, на другой вход которого подается сигнал Х 2, представляющий собой задание регулятору от устройства 3. В элементе сравнения производится операция вычитания, в результате которой получается рассогласование Х = X Х 0.

Сигнал Х заставляет работать остальные элементы схемы. В усилителе его мощность повышается до Х 3 и воздействует на исполнительный механизм, который преобразует этот сигнал в удобный для использования вид энергии X 4 и изменяет положение регулирующего органа. В результате изменяется поток энергии или вещества, подводимого к объекту, т.е. изменяется регулирующее воздействие.

По взятому для примера рефрижераторному вагону можно проследить за взаимодействием элементов структурной схемы (рис. 1 и 2).

Температуру в вагоне X воспринимает термочувствительная система термостата, преобразует ее в давление Х 1 и воздействует на пружину термостата ЭС, отрегулированную на определенное усилие сжатия винтом задающего устройства 3. При повышении температуры в вагоне t ваг в результате теплопритоков Q н увеличивается рассогласование X .

При определенном значении t ваг замыкаются контакты термостата, включающие электрическую систему управления холодильной машиной У, которая получает энергию Е от внешнего источника. Исполнительные механизмы ИМ электрической системы включают холодильную машину РО, которая воздействует величиной Q н на объект. Структурные схемы других автоматических устройств можно получить из рассмотренной схемы. Сигнализирующая система отличается от системы регулирования тем, что в ней нет исполнительного механизма. Цепь прямой связи разрывается, и сигнал Х3 подается обслуживающему персоналу (звонок, включение сигнальной лампы), который и должен произвести регулирование. В системе автоматической защиты вместо исполнительного механизма и регулирующего органа имеется устройство управления, которое отключает холодильную установку. В системах сигнализации и защиты сигнал Х3 изменяется скачкообразно, когда величина X достигает заданного значения. Автоматические регуляторы классифицируются по назначению: регуляторы давления, температуры, уровня и т.д. Они различаются конструкцией чувствительного элемента. Регуляторы бывают прямого и непрямого действия. Если мощность сигнала рассогласования достаточна для воздействия на регулирующий орган, регулятор считается прямодействующим. В регуляторах непрямого действия для привода регулирующего органа используется внешний источник энергии Е (электрический, пневматический, гидравлический, комбинированный), подводимой через усилитель мощности У.

В зависимости от способа воздействия на объект различают регуляторы плавного и позиционного (релейного) действия. В регуляторах плавного действия регулирующий орган может занять любое положение в пределах между максимальным и минимальным. У позиционных регуляторов регулирующий орган может занимать два или несколько определенных положений. По типу задающего элемента регуляторы бывают стабилизирующие, программные, следящие, оптимизирующие. Стабилизирующие регуляторы поддерживают регулируемую величину на постоянном заданном уровне. Программные регуляторы изменяют регулируемую величину по заранее намеченной программе, следящие - в зависимости от изменений какого-нибудь внешнего параметра, Оптимизирующие регуляторы, анализируя внешние параметры, обеспечивают оптимальное ведение процесса. В холодильных установках чаще применяются стабилизирующие регуляторы.

Система регулирования согласовывает характеристики отдельных элементов машины при изменений их холодопроизводительности.

Характеристики представляют собой зависимости холодопроизводительности, расхода энергии на работу компрессора и охлаждение конденсатора от внешних условий, т.е. от температуры окружающей среды. Они позволяют установить взаимную связь параметров компрессора, испарителя и конденсатора. Построение характеристик проводят по уравнениям теплового баланса системы «холодильная машина - охлаждаемое помещение» и энергетическим соотношениям, описывающим работу основных элементов машины с учетом изменения по времени параметров хладагента и окружающей среды. При этом балансовые и энергетические соотношения представляют в функции температуры охлаждаемого объекта (температуры кипения хладагента) и температуры окружающей среды (температуры конденсации хладагента).

Процесс регулирования машины на требуемый режим охлаждения или на заданный температурный режим теоретически может быть реализован количественным или качественным способом. Первый предусматривает изменение расхода хладагента через испаритель, второй - изменение его параметров. Однако температура охлаждаемого объекта определяется температурой кипения хладагента, которая самоустанавливается в зависимости от холодопроизводительности компрессора, испарителя и конденсатора. Поэтому процесс регулирования определяет не только баланс холодопроизводительности компрессора Q oк и испарителя Q ои, но и температурный уровень отвода или подвода теплоты. Следовательно, регулирование паровой компрессорной машины представляет собой комбинированный процесс, сочетающий количественный и качественный способы.

Исполнительным органом системы регулирования (регулятором холодопроизводительности) служит дроссельный вентиль. Рабочий режим машины, который соответствует точке пересечения характеристик компрессора и испарителя Q oк = Q ои, обеспечивают изменением проходного сечения вентиля. Схема согласования характеристик основных элементов машины при некотором постоянном значении температуры окружающей среды приведена на рис. 3.

Характеристика испарителя Q oк =f (T 0) (T 0 - температура кипения хладагента) отвечает изменению теплопритоков охлаждаемого помещения, характеристика компрессора Q ок = f (T 0) - регулированию его производительности, расходная характеристика дроссельного вентиля Q дв= f (T 0) устанавливает степень его закрытия или открытия. Характеристики перечисленных элементов машины при изменении режима ее работы показаны штриховыми линиями. Точка А определяет рабочую точку системы «машина - охлаждаемое помещение» как объекта регулирования при переходе с одного режима работы на другой. При этом точка А ′соответствует рабочему режиму в процессе регулирования компрессора, а точка А ′′- при изменении характеристики испарителя. Регулирование холодопроизводительности машины с поршневым компрессором осуществляют плавным или ступенчатым (позиционным) регулированием его производительности. В машинах малой и средней мощности получили распространение следующие способы плавного регулирования с помощью внешних или встроенных конструктивных устройств: перепуск хладагента со стороны нагнетания на всасывание (балансирование), который осуществляют регулирующими вентилями, управляемыми от датчика давления или температуры; дросселирование на всасывании с переводом компрессора на работу при пониженном давлении всасывания; изменение объема мертвого пространства подключением к нему дополнительного внешнего объема; изменение частоты вращения вала компрессора.

Рис. 3. Характеристики основных элементов холодильной машины

Ступенчатое регулирование в машинах малой и средней холодопроизводительности в основном выполняют способом «пуск-остановка» с предельной частотой циклов до 5-6 в 1 ч; для многоступенчатых компрессоров эффективно используют отключение отдельных цилиндров путем отжатия всасывающих клапанов с помощью механических толкателей. Управление движением толкателей производят гидравлическими, пневматическими или электромагнитными приводами. Внедряется система электронного регулирования производительности с воздействием на всасывающие клапаны электромагнитного поля.

Примером ступенчатого пропорционального регулирования является регулирование температуры воздуха в вагоне летом, когда с увеличением теплопритока в вагон увеличивается холодопроизводительность холодильной установки (увеличиваются частоты вращения вала компрессора или включается большее количество его цилиндров). В этом случае импульсом, сигнализирующим необходимость увеличения холодопроизводительности, является дальнейшее повышение температуры воздуха в вагоне.

Пример пропорционального плавного регулирования - регулирование температуры воздуха в вагоне зимой, когда с увеличением теплопотерь вагона плавно увеличивается температура воды в котле водяного отопления. В этом случае импульсом, сигнализирующим необходимость повышения температуры воды в котле, является изменение температуры наружного воздуха. Наиболее совершенным, но и наиболее сложным видом пропорционального регулирования является изодромное регулирование, основанное на применении чувствительной и гибкой обратной связи, благодаря которой регулируемый параметр изменяется в очень узких пределах или даже держится на практически постоянном уровне. Первоначально изодромное регулирование применялось для обеспечения постоянной скорости вращения деталей машин, откуда и получило свое название (по-гречески изо - постоянный, равный; дромос - бег, скорость). В настоящее время оно применяется в самых различных процессах, например, для автоматического вождения морских кораблей по заданному курсу.

Вследствие сложности аппаратуры, трудных условий ее работы при вибрации и тряске, а главное из-за отсутствия практической необходимости в предельно точном регулировании температуры воздуха, в установках кондиционирования воздуха вагонов изодромное регулирование не применяется.

При выборе способа регулирования необходимо учитывать начальные и эксплуатационные затраты, технологичность и надежность конструкции. Для оценки энергетической эффективности системы регулирования используют отношение холодопроизводительности компрессора при заданной степени регулирования к номинальной: =qop/qон = f(T 0). Показатели сравнительной эффективности основных способов регулирования производительности поршневых компрессоров приведены на рис. 4. Для способов пуск-остановка (линия 1) и отжатие впускных клапанов (линия 2 ) характерны малые энергетические потери и практическая независимость от режима работы. При дросселировании на всасывании (линия 3 ) наблюдается резкое падение эффективности с ростом температуры кипения хладагента, поэтому этот способ применяют в компрессорах, которые работают в узком диапазоне давлений кипения. Балансирование (линия 4 ) - наименее эффективный вариант регулирования, так как он связан с потерями энергии сжатого пара при его перепуске, повышением температуры всасывания хладагента, а следовательно, и температуры нагнетания; энергетические потери при этом способе соответствуют степени уменьшения холодопроизводительности машины.

В холодильных машинах с винтовыми компрессорами используют следующие способы регулирования холодопроизводительности: дросселирование на всасывании, балансирование, изменение частоты вращения вала, золотниковой системой.

Дросселирование обеспечивают автоматическим перекрытием дроссельного клапана, установленного на входе в компрессор. Эффективность этого способа ограничена снижением производительности до 70% от номинальной; при более глубоком дросселировании существенно снижается экономичность.

Рис. 4. Энергетическая эффективность основных способов регулирования производительности поршневых компрессоров

Балансирование осуществляют перепуском части хладагента через безопасный клапан со стороны нагнетания на всасывание.

Применение такого способа обычно ограничивают компрессорами сухого сжатия.

Наиболее экономичное регулирование путем отключения в процессе сжатия части объема рабочих полостей обеспечивает золотниковая система. Несмотря на усложнение конструкции компрессора, такая система открывает дополнительные схемные возможности усовершенствования паровых холодильных машин.

Автоматизация работы холодильной машины позволяет с высокой точностью поддерживать требуемый уровень параметров процесса охлаждения, отвечающий оптимальному технологическому режиму, а также частично или полностью исключить участие обслуживающего персонала в эксплуатации холодильного оборудования.

В паровых компрессорных машинах объектами автоматизации являются теплообменные аппараты, в частности степень заполнения испарителя жидким хладагентом и давление процесса конденсации. Объективным и технически наиболее удобным показателем, отражающим степень заполнения испарителя, служит перегрев пара

на выходе из него. Действительно, когда часть теплопередающей поверхности испарителя обеспечивает перегрев паров хладагента, уменьшение его подачи приводит к снижению степени заполнения, а следовательно, к росту перегрева. При этом повышение температуры перегрева сверх расчетного уровня ухудшает энергетические показатели машины и надежность ее работы. Подача хладагента в испаритель в количестве, превышающем возможности процесса теплопередачи, связана с переполнением испарителя и снижением перегрева. Последнее приводит к снижению холодопроизводительности машины, а в ряде случаев к работе компрессора на влажном паре, что может привести к гидравлическому удару.

Системы автоматического регулирования степени заполнения испарителя по перегреву паров хладагента выполняют плавными и позиционными (обычно двухступенчатыми). В качестве автоматического регулирования в плавных системах широко используют терморегулирующие вентили (ТРВ), в которых величину перегрева паров хладагента получают в виде разности между температурой пара, выходящего из испарителя, и температурой кипения хладагента. Терморегулирующие вентили, обеспечивающие процесс дросселирования хладагента от давления конденсации до давления испарения, устанавливают на линии между конденсатором и испарителем.

Принципиальная схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ, используемая в хладоновых машинах РПС, приведена на рис. 5. Чувствительный элемент измерительной головки 1 терморегулирующего вентиля, выполненный в виде мембраны 2 или сильфона, находится под воздействием разности давлений перегретого пара, соответствующего температуре перегрева, и хладагента на выходе из испарителя 7 , отвечающего температуре кипения. Перегретый пар, который образуется в термосистеме, состоящей из термобаллона 6 и капилляра 3 , поступает в пространство над мембраной; пространство под мембраной связывают уравнительной трубкой 4 с всасывающей линией компрессора 5 . При этом уравнительную трубку присоединяют к всасывающей линии в месте установки термобаллона. В некоторых конструкциях в термобаллон вводят твердый поглотитель и всю термосистему заполняют газом.

Перемещение штока 12 в результате деформации чувствительного элемента при изменении температуры перегрева обеспечивает открытие или закрытие запорного клапана 11 , регулирующего поступление жидкого хладагента из конденсатора в испаритель по линии 10 . С помощью регулировочного винта 8 изменяют силу затяжки пружины 9 и, следовательно, необходимую величину температуры перегрева. В процессе автоматического регулирования ТРВ должен обеспечить оптимальный уровень заполнения испарителя и устойчивость системы во всем требуемом диапазоне изменения холодопроизводительности, что особенно важно для холодильных машин рефрижераторного подвижного состава. Практически устойчивая работа системы ТРВ начинается при перегреве (3 6) К. Для расширения диапазона регулирования и повышения его устойчивости в системе может быть использовано несколько ТРВ.

Рис. 5. Схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ

Процесс автоматического регулирования давления конденсации хладагента в машинах с конденсаторами воздушного охлаждения осуществляют изменением скорости или расхода охлаждающего воздуха.

Технически его обеспечивают системой жалюзи или поворотных заслонок, использованием вентиляторов с изменяемым углом установки направляющих лопаток, применением двухскоростных электродвигателей, а также периодическим выключением вентиляторов. Изменение скорости или расхода охлаждающего воздуха приводит к изменению коэффициента теплопередачи конденсатора, а следовательно, к

изменению температуры и давления процесса конденсации.

В ряде случаев повышения температуры конденсации добиваются частичным подтоплением поверхности конденсатора жидким

хладагентом.

Приборы автоматического регулирования, помимо контроля параметров испарителя и конденсатора, поддерживают заданную температуру воздуха в охлаждаемом помещении, обеспечивают своевременное удаление инея («снеговой шубы») с поверхности испарителя, регулируют уровень масла в маслоотделителях и т.д. Работу системы регулирования сочетают с автоматической защитой, которая включает комплекс мер по безопасной эксплуатации холодильных машин и предупреждает аварийные режимы путем отключения машины.

Система автоматической защиты включает соответствующие датчики (реле защиты и устройства для преобразования импульсов от этих реле в сигнал остановки). В ряде случаев систему защиты дополняют блокировкой, которая исключает повторный пуск машины без устранения причины, вызвавшей срабатывание защиты.

В компрессорных холодильных машинах датчики системы защиты следят за уровнем максимального давления и температуры хладагента на нагнетании компрессора, минимального давления на всасывании, за давлением и температурой масла в системе смазки, за работой электродвигателя, исключающей его перегрузку или короткое замыкание. В систему, автоматической защиты может быть введена световая или звуковая сигнализация, оповещающая о достижении предельного значения контролируемой величины или приближения к опасному режиму работы машины.

3. Классификация и основные элементы

приборов автоматики

По назначению приборы автоматики можно разделить на четыре основные группы: регулирования, защиты, контроля, сигнализации.

Приборы автоматического регулирования обеспечивают включение или выключение холодильной установки и отдельных ее аппаратов, а также управляют процессами работы. В холодильных установках подвижного состава приборы регулирования осуществляют следующие функции: правильно заполняют испаритель хладагентом (терморегулирующие вентили и др.); поддерживают температуру в охлаждаемых помещениях в заданных интервалах (термостаты, дуостаты); регулируют давление в конденсаторе в заданном интервале (прессостаты); обеспечивают своевременное оттаивание инея с испарителя (прессостаты, программные реле, термостаты); открывают или прекращают подачу жидкого или парообразного хладагента (электромагнитные вентили, обратные клапаны); ограничивают поступление хладагента в компрессор из испарителя (регуляторы давления всасывания).

Приборы автоматической защиты выключают всю холодильную установку или отдельные аппараты при наступлении опасных режимов работы: при достижении предельно допустимого давления нагнетания (прессостаты); при вакууме на стороне всасывания (прессостаты); при падении давления масла в системе смазки компрессора (релеразности давлений); при низкой температуре масла в картере компрессора (термостаты) ; при высокой температуре паров хладагента, сжатых в компрессоре (реле температуры); при перегрузке электродвигателя или коротком замыкании (тепловые реле, автоматические выключатели, плавкие предохранители).

Приборы автоматического контроля осуществляют измерения, а в некоторых случаях и записи определенных параметров работы холодильной установки, например температуры в охлаждаемом помещении (термограф), расхода электроэнергии (электросчетчик), времени работы оборудования (счетчики моточасов) и др. Приборы автоматической сигнализации включают световые или звуковые сигналы при достижении заданного значения контролируемой величины или при приближении к опасному режиму работы машины.

Приборы автоматики состоят из следующих основных частей: чувствительного элемента (датчика), передающего механизма, регулирующего (рабочего) органа, устройства для настройки (задатчика). Чувствительный элемент воспринимает контролируемую величину (температуру, давление, уровень жидкости и т.п.) и преобразует ее в удобный вид энергии для дистанционной передачи. Передающий механизм соединяет чувствительный элемент с регулирующим (рабочим) органом.

Регулирующий орган действует по сигналу чувствительного элемента. В приборах двухпозиционного действия (реле) рабочий орган может занимать только два положения. Например, электрические контакты реле давления (прессостата) или реле температуры (термостата) могут быть замкнуты или разомкнуты, клапан электромагнитного вентиля - закрыт или открыт. В приборах плавного (пропорционального) действия каждому изменению регулируемой величины соответствует перемещение регулирующего органа (например, плавное перемещение клапана регулирующего вентиля при изменении тепловой нагрузки на испаритель). Устройство для настройки прибора устанавливает заданное значение регулируемой или контролируемой величины. Отклонение регулируемой величины, не вызывающее перемещение регулирующего органа, называется зоной нечувствительности, или дифференциалом прибора. Чувствительные элементы приборов давления выполняются в виде сильфонов и мембран. Сильфон представляет собой тонкостенную гофрированную трубку. Изготавливают сильфоны из латуни, бронзы, нержавеющей стали. При изменении давления в сильфоне длина его может значительно изменяться. Мембраны изготавливают в виде круглых эластичных пластин, закрепленных по периметру. Мембраны могут быть упругие (металлические) и мягкие (резиновые, пластмассовые, из прорезиненных тканей).

204 Температурные чувствительные элементы выполняют в виде биметаллических пластин и термочувствительных систем с различными наполнителями. В элементах, основанных на расширении твердых тел при нагревании, температура преобразуется в механическое перемещение (дилатометрические элементы). Перемещение происходит за счет неодинаковых коэффициентов линейного расширения у различных металлов. На рис. 3.6 а, б показаны элементы с двумя металлическими деталями 1 и 2 из разного материала, на рис. 3.6 в, г - чувствительный элемент из биметалла, т.е. из двух слоев металлов, сваренных между собой.

В элементах с тепловым расширением жидкостей используется зависимость изменения объема жидкости от температуры. Датчики, заполненные ртутью (рис. 3.7, а, б), используются для преобразования температуры в электрический сигнал без промежуточной механической системы. Датчик на рис. 3.7, а имеет релейную характеристику, на рис. 3.7, б - плавную. Применявшиеся ранее на рефрижераторных поездах ртутноконтактные датчики температуры оказались недостаточно надежными, так как из-за вибраций и толчков на ходу появлялись разрывы ртутного столба и нарушалась электрическая цепь. Кроме того, ртутно-контактные датчики рассчитаны на малую электрическую мощность сигнала.

Рис. 3.6. Дилатометрические чувствительные элементы

Рис. 3.7. Жидкостные

термочувствительные

Страница 4 из 5

Система автоматизации представляет собой последовательное объединение при помощи трубопроводов всех элементов холодильной установки, обеспечивающее точное поддержание заданной температуры охлаждения, непрерывный контроль и защиту машины от аварий, а также надежность эксплуатации холодильного оборудования. В системе должна быть предусмотрена возможность простой регулировки температуры и экономичной эксплуатации установки. Схему системы автоматизации выбирают в зависимости от холодопроизводительности и назначения установки.

Применяют системы автоматизации холодильных машин с регулированием производительности посредством отжатия электромагнитных клапанов, а также включения и выключения холодильных агрегатов. На транспорте наиболее распространены системы автоматики, устроенные по второму принципу.

Устройство системы автоматического регулирования фреоновой машины обусловливается типом компрессора, испарителя и конденсатора, способом изменения холодопроизводительности, а также числом ступеней сжатия или каскадов охлаждения.

Характерная особенность автоматизации аммиачных холодильных установок - повышенные требования в отношении безопасности эксплуатации вследствие высокой токсичности аммиака, его взрывоопасности, а также опасности разрушения компрессоров от гидравлических ударов.

В вагонах рефрижераторного подвижного состава, вагонах-ресторанах, в пассажирских вагонах с кондиционированием воздуха для охлаждения шкафов и небольших камер краткосрочного хранения продуктов применяют следующие автоматизированные фреоновые холодильные агрегаты :

  • компрессор-двигатель;
  • компрессор-конденсатор;
  • испаритель-регулирующая станция;
  • испаритель-конденсатор;
  • компрессор-конденсатор-испаритель.

Компрессоры этих агрегатов обычно вертикальные или V-образные, многоцилиндровые блок-картерные, с воздушным охлаждением цилиндров. Существуют также герметичные агрегаты, в которых компрессор вместе с электродвигателем помещен в герметичный кожух. К таким агрегатам относятся установки домашних холодильников.

Рис. 1 - Схема холодильника «ЗИЛ» Москва

Холодильник «ЗИЛ-Москва» оборудован компрессором (7) (рис. 1) с электродвигателем (5), конденсатором (1), испарителем (2), термостатом (5), капиллярной трубкой (4), фильтром (5), пусковым и силовым реле. Компрессор имеет штуцер (6) для зарядки хладоном-12. Работа агрегата регулируется с помощью термостата, который автоматически поддерживает заданную температуру в холодильном шкафу. Включение электродвигателя осуществляется пусковым реле, в одном корпусе с которым смонтировано тепловое реле, защищающее двигатель от перегрузки.

Вагоны-рестораны оборудованы фреоновыми установками ФРУ и ФАК для охлаждения холодильных шкафов и камер. Схема фреоновой ротационной установки (ФРУ) показана на (рис. 2), а установки с поршневым компрессором - на рисунке 3.

Рис. 2 - Схема фреоновой ротационной холодильной установки: 1 - испаритель; 2 - терморегулирующий вентиль; 3 - жидкостная линия; 4 - предохранители; 5 - всасывающая линия; 6 - реле давления; 7 - арматурный щиток; 8 - выключатели; 9 - штепсельная розетка; 10 - магнитный пускатель; 11 - нагнетательный вентиль; 12 - газовый фильтр; 13 - ротационный компрессор; 14 - воздушный конденсатор; 15 - электродвигатель; 16 - всасывающий патрубок; 17 - обратный клапан; 18 - фильтр для жидкости; 19 - ресивер; 20 и 21 - запорные вентили ресивера

Рис. 3 - Схема фреоновой холодильной машины ИФ-50: 1 - испарительная батарея; 2 - терморегулирующий вентиль; 3 - магнитный пускатель; 4 - чувствительный патрон терморегулирующего вентиля; 5 - теплообменник; 6 - реле давления; 7 - компрессорно-конденсаторный агрегат

Холодильное оборудование цельнометаллического вагона-ресторана состоит из трех автоматических компрессорно-конденсаторных агрегатов типа ФАК-0,9ВР, снабженных приводом от электродвигателей постоянного тока ПНФ-5 напряжением 50 В. Каждый агрегат охлаждает два ящика или шкафа, оборудованных испарительными батареями и аккумуляционными плитами. В вагоне имеется три подвагонных ящика для хранения рыбы, мяса и напитков. В раздаточном отделении установлен шкаф для хранения кондитерских изделий; холодильный шкаф, который размещен на кухне, служит для хранения гастрономических продуктов; рядом с ним расположен шкаф для холодных блюд.

В холодильных установках вагонов-ресторанов используются две системы охлаждения - с непосредственным кипением хладагента и аккумуляционная. Для охлаждения подвагонных ящиков и шкафов применены трубчатые испарители из медных труб с плоскими латунными ребрами, а также испарители из медных труб сечением 12×1 мм с ребрами из тонкой латунной ленты. В подвагонном ящике для напитков и шкафу для кондитерских изделий установлены аккумуляционные плиты. Они представляют собой сварные баки из нержавеющей стали, внутри которых размещены трубчатые пластинчатые испарители. Межтрубное пространство внутри баков залито водой, которая замерзает во время работы установки и аккумулирует холод.

Все ящики и шкафы оборудованы терморегулирующими вентилями. Цикличность работы холодильных агрегатов обеспечивает реле давления РД-1, которое автоматически воздействует на пусковую аппаратуру электродвигателей.

Рис. 4 - Схемы автоматизированных поршневых холодильных установок с несколькими охлаждаемыми объектами: а - при двухпозиционном регулировании; б - при обслуживании двух камер; в - при регулировании температуры с помощью терморегуляторов; 1 - компрессор; 2 - ресивер; 3 - конденсатор; 4 - испаритель; 5 - терморегулирующие вентили; 6 - реле давления; 7 - магнитный пускатель; 8 - электродвигатель; 9 - автоматический дроссель давления; 10 - обратный клапан; 11 - промежуточное реле; 12 - соленоидный вентиль; 13 - терморегулятор; 14 - водорегулирующий вентиль

Типовые схемы автоматизации компрессионных поршневых холодильных установок с несколькими охлаждаемыми объектами могут быть выполнены в различных вариантах. Схема автоматизации при двухпозиционном регулировании в одном или двух испарителях с одинаковой температурой охлаждения воздуха камеры (рис. 4, а) предусматривает применение реле температуры испарителя, камеры или реле низкого давления компрессора. При обслуживании одной холодильной машиной двух камер с различными температурами (рис. 4, б) используют автоматический дроссель давления (9) (АДД). Схема регулирования температуры с помощью терморегуляторов показана на рисунке 4, в.

Автоматизация холодильных установок облегчает работу, делает ее безопасной, совершенствует и упрощает технологические процессы. Это важнейшее условие технического прогресса. Автоматизация проводится для снижения доли ручного труда, поддержания стабильных параметров температуры, влажности, давления, а также предотвращения аварийных ситуаций и увеличения продолжительности службы. Так как требуется меньше обслуживающего персонала, то эксплуатация автоматизированных агрегатов обходится дешевле.

Автоматизация холодильных установок затрагивает управление отдельными операциями - сигнализация, контроль, пуск и выключение определенных механизмов. В целом осуществляется комплексное управление - регулирование и защита. Автоматизировать можно практически любой процесс, но это не всегда целесообразно. Легче всего поддаются автоматизации пароэжекторные и абсорбционные агрегаты, поскольку кроме насосов в них нет лишних движущихся механизмов. С крупными компрессионными моделями все обстоит сложнее. За ними требуется постоянное наблюдение и обслуживание квалифицированным персоналом, поэтому применяют только частичную автоматизацию. Основные элементы системы - измерительный датчик, регулирующий орган и передаточное устройство. Все они взаимосвязаны между собой.

5 причин приобрести Холодильные установки у Компании АквилонСтройМонтаж

  1. Широчайших модельный ряд
  1. Возможность изготовления нестандартных холодильных установок
  1. Гибкая ценовая политика
  1. Инновационные решения в управлении холодильными агрегатами
  1. Энергосберегающие технологические принципы

ОСТАВИТЬ ЗАЯВКУ

Виды приборов автоматизации Существует несколько способов автоматизации, существенно упрощающих производственные процессы. Используются, как единичные опции, так и их комплекс.
    Управление. Специальные технические решения автоматизации отвечают за самостоятельное включение и выключение компрессоров, насосов в соответствии с обозначенным режимом или при колебаниях нагрузки. Устанавливаются реле температуры и времени, реагирующие на изменения или отслеживающие определенный график.Регулирование. Помогают поддерживать на нужном уровне основные рабочие параметры - температуру, давление, влажность. Плавное регулирование производительности позволяет при снижении тепловой нагрузки сохранять конкретную температуру хладоносителя. Также применяется регулирование подачи хладагента в испаритель. Это нужно для обеспечения безопасности работы компрессора, повышения или уменьшения производительности.Сигнализация. Оповещает об опасных изменениях рабочих показателей, режимов, неполадок в функционировании системы.Защита. Помогает исключить вероятность сбоев в работе, опасных ситуаций в результате недопустимого повышения давления, температуры, нарушения функционирования некоторых устройств. Здесь используются всевозможные датчики, термометры, манометры и многое другое
Полная автоматизация холодильных установок подразумевает их оснащение всеми перечисленными средствами управления, контроля, защиты, сигнализации. Посредством их использования можно получить более совершенное оборудование, повышающее производительность организации.Компания «АквилонСтройМонтаж» предлагает установки всех типов, оснащенные современными средствами автоматизации. По вашему запросу наши инженеры проведут автоматизацию уже имеющейся системы холодоснабжения или разработают для вас полностью автоматизированные установки.

Введение……………………………………………………………………………..

1 Описание технологического процесса …………………………………………......

1.1 Автоматизация холодильных компрессорных станций………………………….

1.2 Анализ возмущающих воздействий объекта автоматизации…………………...

1.3 Схема холодильного цикла………………………………………………………..

2 Разработка функциональной схемы холодильной установки…………………….

2.1 Методика разработки схемы………………………………………………………

2.2 Функциональная схема автоматизации холодильного модуля……………….. .

2.3 Работа узлов функциональной схемы автоматизации холодильного модуля….

2.3.1 Узел автоматической защиты компрессоров…………………………………..

2.3.2 Узел автоматического включения резервного водяного насоса………………

2.3.3 Узел оттаивания воздухоохладителей…………………………………………..

3 Выбор технических средств холодильной установки………………......................

3.1 Выбор и обоснование выбора приборов и средств автоматизации……………..

Заключение……………………………………………………………………………

Список литературы……………………………………………………………………

ВВЕДЕНИЕ

Автоматизированные системы управления и регулирования являются неотъемлемой частью технологического оснащения современного производства, способствуют повышению и качества продукции и улучшают экономические показатели производства за счет выбора и поддержания оптимальных технологических режимов.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

По уровню автоматизации компрессорные холодильные установки занимает одно из ведущих мест среди других отраслей промышленности. Холодильные установки характеризуются непрерывностью протекающих в них процессов. При этом выработка холода в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на холодильных установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в охладительной технике.

Автоматизация параметров дает значительные преимущества:

Обеспечивает уменьшение численности рабочего персонала, т. е. повышение производительности его труда,

Приводит к изменению характера труда обслуживающего персонала,

Увеличивает точность поддержания параметров вырабатываемого холода,

Повышает безопасность труда и надежность работы оборудования,

устройства управления

Цель автоматизации холодильных машин и установок - это повышения экономической эффективности их работы и обеспечение безопасности людей (в первую очередь обслуживающего персонала).

Экономическая эффективность работы холодильной машины обеспечивается уменьшением эксплуатационных расходов и сокращением затрат на ремонт оборудования.

Автоматизация уменьшает количество обслуживающего персонала и обеспечивает работу машины в оптимальном режиме.

Безопасность работы холодильного оборудования обеспечивается применением автоматических устройств, защищающих оборудование от опасных режимов работы.

По степени автоматизации холодильные машины и установки делятся на 3 группы:

1 Холодильное оборудование с ручным управлением.

2 Частично автоматизированное холодильное оборудование.

3 Полностью автоматизированное холодильное оборудование.

Оборудование с ручным управлением и частично автоматизированные машины работают с постоянным присутствием обслуживающего персонала.

Полностью автоматизированное оборудование не требует постоянного присутствия обслуживающего персонала, но не исключает необходимости периодических контрольных осмотров и проверок по установленному регламенту.

Автоматизированная холодильная установка должна содержать одну или несколько систем автоматизации, каждая из которых выполняет определенные функции. Кроме того, существуют устройства объединяющие (синхронизирующие) работу этих систем.

Система автоматизации - это совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой автоматизации без участия обслуживающего персонала.

Объектом курсового проекта является холодильная установка в комплексе, отдельные ее элементы.

Целью данного курсового проекта является описание технологического процесса холодильного оборудования, разработка функциональной схемы данной установки и выбор технических средств автоматизации.

1 ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

1.1 Автоматизация холодильных компрессорных станций

Искусственный холод находит широкое применение в пищевой промышленности, в частности при консервировании скоропортящихся продуктов. При охлаждении обеспечивается высокое качество хранимых и выпускаемых продуктов.

Искусственное охлаждение может осуществляться периодически и непрерывно. Периодическое охлаждение происходит при плавлении льда либо при сублимации твердого диоксида углерода (сухого льда). Этот способ охлаждения обладает большим недостатком, так как в процессе плавления и сублимации хладагент теряет свои охлаждающие свойства; при длительном хранении продуктов трудно обеспечить определенную температуру и влажность воздуха в холодильной камере.

В пищевой промышленности широко распространено непрерывное охлаждение с применением холодильных установок, где хладагент - сжиженный газ (аммиак, фреон и др.) - совершает круговой процесс, при котором он после осуществления холодильного эффекта восстанавливает свое первоначальное состояние.

Применяемые хладагенты кипят при определенном давлении, зависящем от температуры. Следовательно, изменяя давление в сосуде, можно изменять температуру хладагента, а следовательно, и температуру в холодильной камере. Компрессор / всасывает пары аммиака из испарителя II, сжимает их и через маслоотделитель III нагнетает в конденсатор IV. В конденсаторе пары аммиака конденсируются за счет охлаждающей воды, и жидкий аммиак из конденсатора, охлажденный в линейном ресивере V, через регулирующий вентиль VI поступает в испаритель II, где, испаряясь, охлаждает промежуточный хладоно-ситель (рассол, ледяную воду), нагнетаемый к потребителям холода насосом VII.

Регулирующий вентиль VI служит для дросселирования жидкого аммиака, температура которого при этом снижается. Система автоматизации предусматривает автоматическое управление работой компрессора и противоаварийные защиты. Командой на автоматический пуск компрессора служит повышение температуры рассола (ледяной воды) на выходе из испарителя. Для управления температурой используется регулятор температуры типа, датчик которого устанавливается на трубопроводе выхода рассола (ледяной воды)

из испарителя.

При работе компрессора в автоматическом режиме функционируют следующие противоаварийные защиты: от понижения разности давлений масла в системе смазки и картере - применяется датчик-реле разности давлений; от понижения давления всасывания и повышения давления нагнетания - применяется датчик-реле давления; от повышения температуры нагнетания - применяется датчик-реле температуры; от отсутствия протока воды через охлаждающие рубашки - применяется реле протока; от аварийного повышения уровня жидкого аммиака в испарителе - применяется полупроводниковое реле уровня.

При пуске компрессора в автоматическом режиме открывается вентиль с электромагнитным приводом на подаче воды в охлаждающие рубашки и закрывается вентиль на байпасе.

Автоматическое регулирование уровня жидкого аммиака в испарителе осуществляется полупроводниковыми реле уровня, управляющим вентилем с электромагнитным приводом, установленным на подаче жидкого аммиака в испаритель.

Контроль верхнего и нижнего уровней жидкого аммиака в линейном ресивере осуществляется полупроводниковыми реле уровня.

Контроль давления рассола в нагнетательном трубопроводе осуществляется датчиком-реле давления.

Дистанционный контроль температуры воздуха, аммиака, рассола, воды в контрольных точках холодильной установки осуществляется термопреобразователями.

Аппаратура контроля, управления и сигнализации остального технологического оборудования размещена в панелях щита управления.

1.2 Анализ возмущающих воздействий объекта автоматизации

В данной схеме предусмотрены контроль, регулирование, управления и сигнализация параметров технологического процесса.

Контроль верхнего и нижнего уровней жидкого аммиака в линейном ресивере, в котором контролируется уровень от которого зависит наполнение ресивера.

Также контролю подлежит температура воздуха в холодильной установке от которой зависит охлаждение и количество вырабатываемого холода.

Контроль давления холодного рассола в нагнетательном трубопроводе, который зависит от нагнетания насосом, насос воздействуя на холодный рассол изменяет его подачу.

Также контролируется температура холодной воды поступающей из бассейна в конденсатор которая необходима для конденсирования (охлаждения) паров аммиака.

На выходе из конденсатора контролируется температура жидкого аммиака, который поступает в линейный ресивер.

Регулирующий вентиль VI установленный на трубопроводе служит для дросселирования жидкого аммиака, за счет чего температура при этом снижается.

Повышение температура рассола (ледяной воды) на выходе из испарителя управляет работой компрессора и служит командой на автоматический пуск компрессора.

Автоматизация производственных процессов является важнейшим условием технического прогресса любой отрасли промышленности.

Цель автоматизации холодильных установок - замена ручного труда, точное поддержание заданных параметров, предотвращение аварий, увеличение срока службы оборудования, сокращение затрат, повышение культуры производства.

Эксплуатация автоматизированных холодильных установок обходится дешевле, так как отпадает необходимость в части обслуживающего персонала, занятого ручными операциями по пуску, регулированию и остановке холодильного оборудования, визуальному наблюдению за работой машин и аппаратов.

Устройства автоматизации могут выполнять как отдельные операции: контроль, сигнализация, включение и выключение исполнительных механизмов, так и совокупность этих операций: автоматическая защита и регулирование.

Любая операция, осуществляемая машинистом современных холодильных установок, поддается автоматизации. Однако не все операции целесообразно автоматизировать.

Автоматизация процессов регулирования и защиты необходима в тех случаях, когда эти процессы требуют затрат ручного труда и когда машинист не может обеспечить точное регулирование и надежную защиту. Очень важно также автоматизировать работы во вредных и взрывоопасных помещениях.

Абсорбционные и пароэжекторные холодильные машины ввиду отсутствия движущихся механизмов (кроме насосов) легче поддаются полной автоматизации, чем крупные компрессионные, которые требуют непрерывного наблюдения и квалифицированного обслуживания.

Крупные и средние холодильные установки снабжают частичной автоматизацией, при которой автоматически регулируется лишь часть процессов. Чаще такие холодильные установки работают на полуавтоматическом режиме, при котором остановка машины происходит автоматически, а пуск вручную.

Основными частями любой автоматической системы являются: измерительный (чувствительный) элемент, или датчик, воспринимающий изменение регулируемой величины; регулирующий орган, изменяющий по сигналу измерительного элемента подачу вещества или энергии в регулируемый объект, и передаточное устройство, соединяющее датчик с исполнительным механизмом. Измерительный элемент снабжен обычно приспособлением для настройки на заданное значение регулируемой величины.

Приборы автоматического управления должны включать или выключать компрессоры и насосы при изменениях нагрузки. Компрессорами управляют с помощью реле температуры, останавливающих компрессоры при понижении температуры рассола или давления в испарителях ниже заданного предела и включающих их при повышении температуры в испарителе. Иногда холодильные машины включают с помощью реле времени, которому задают время включения компрессора.

Приборы автоматического регулирования предназначены для поддержания заданных параметров работы холодильной установки: температуры, давления, уровня. Благодаря плавному регулированию холодопроизводительности можно поддерживать заданную температуру хладоносителя при понижении тепловой нагрузки. Достигается оно следующими путями:
установкой регуляторов давления «до себя», поддерживающих постоянное давление в испарителях и дросселирующих пары перед компрессором;
установкой регуляторов давления «после себя», перепускающих часть паров из нагнетательной линии во всасывающую. За счет этого часть паров, которая могла бы поступить в компрессор из испарителя, отсекается и холодопроизводительность установки падает;
подключением дополнительного вредного пространства в поршневом компрессоре, уменьшающего отсос паров хладагента из испарителя.

Регулирование подачи хладагента в испаритель преследует две цели: обеспечение безопасной работы компрессора, путем защиты его от гидравлического удара и уменьшение или увеличение холодопроизводительности установки.

Автоматическая сигнализация оповещает о изменениях режима, которые могут повлечь за собой срабатывание элементов автоматической защиты, и извещает о включении и выключении машин, магнитных вентилей, задвижек и приборов. Примером сигнального прибора служит дистанционный указатель уровня ДУ, соединяемый с исполнительными механизмами - соленоидными вентилями или звуковыми сигнальными устройствами - ревунами.

Автоматическая защита позволяет избегать опасных для холодильной машины последствий чрезмерного повышения давления нагнетания, понижения давления и температуры испарения, нарушений режима работы смазочных устройств и т. д.

Для защиты установок от аварийного режима в схемах автоматизации предусматривают приборы, отключающие холодильные агрегаты при резких нарушениях режима работы.

Вынос вторичных показаний приборов контроля и измерения (термометров, манометров, расходомеров, указателей уровня) на центральный щит, где расположена и регулирующая станция, позволяет управлять работой холодильной установки централизованно. Часть измерений записывают самопишущие приборы (термометры, манометры).

Комплексная автоматизация холодильной установки состоит в оснащении ее устройствами автоматического управления, регулирования и защиты, а также средствами контроля и сигнализации, обеспечивающими исправную работу этих устройств.

Контрольные вопросы
1. Что дает автоматизация холодильных установок?

2. Назовите основные элементы автоматизации.

3. Из каких элементов состоит система автоматического регулирования?

4. Расскажите об устройстве ТРВ,
170
5. Объясните конструкцию и принцип работы соленоидного вентиля.

6. Как работают мембранные пневматические клапаны?

7. Назовите способы регулирования холодопроизводительности.

8. Расскажите о работе реле давления.

9. Расскажите об устройстве РУКЦ.

10. Что вы знаете о водорегулирующем вентиле?

11. Перечислите способы защиты компрессора от опасности гидравлического удара.

12. Объясните устройство и принцип работы дистанционного указателя уровня.

13. Какие виды автоматической сигнализации вы знаете?

14. Проследите работу приборов автоматизации в схеме двухступенчатой холодильной установки.

15. Расскажите об особенностях автоматизации холодильных турбоагрегатов.

16. Расскажите о схемах автоматизации отдельных узлов аммиачных холодильных установок.