Как из принтера сделать станок. Собираем станок с чпу из принтера своими руками


На вопрос, как сделать станок с ЧПУ, можно ответить кратко. Зная о том, что самодельный фрезерный станок с ЧПУ, в общем-то, – непростое устройство, имеющее сложную структуру, конструктору желательно:

  • обзавестись чертежами;
  • приобрести надёжные комплектующие и крепежные детали;
  • подготовить хороший инструмент;
  • иметь под рукой токарный и сверлильный станки с ЧПУ, чтобы быстро изготовить.

Не помешает просмотреть видео – своеобразную инструкцию, обучающую – с чего начать. А начну с подготовки, куплю всё нужное, разберусь с чертежом – вот правильное решение начинающего конструктора. Поэтому подготовительный этап, предшествующий сборке, – очень важен.

Работы подготовительного этапа

Чтобы сделать самодельный ЧПУ для фрезерования, есть два варианта:

  1. Берёте готовый ходовой набор деталей (специально подобранные узлы), из которого собираем оборудование самостоятельно.
  2. Найти (изготовить) все комплектующие и приступить к сборке ЧПУ станка своими руками, который бы отвечал всем требованиям.

Важно определиться с предназначением, размерами и дизайном (как обойтись без рисунка самодельного станка ЧПУ), подыскать схемы для его изготовления, приобрести или изготовить некоторые детали, которые для этого нужны, обзавестись ходовыми винтами.

Если принято решение создать станок ЧПУ своими руками и обойтись без готовых наборов узлов и механизмов, крепёжных деталей, нужна та схема, собранный по которой станок будет работать.

Обычно, найдя принципиальную схему устройства, сначала моделируют все детали станка, готовят технические чертежи, а потом по ним на токарном и фрезерном станках (иногда надо использовать и сверлильный) изготовляют комплектующие из фанеры или алюминия. Чаще всего, рабочие поверхности (называют еще рабочим столом) – фанерные с толщиной 18 мм.

Сборка некоторых важных узлов станка

В станке, который вы начали собирать собственноручно, надо предусмотреть ряд ответственных узлов, обеспечивающих вертикальное перемещение рабочего инструмента. В этом перечне:

  • винтовая передача – вращение передаётся, используя зубчатый ремень. Он хорош тем, что не проскальзывают на шкивах, равномерно передавая усилия на вал фрезерного оборудования;
  • если используют шаговый двигатель (ШД) для мини-станка, желательно брать каретку от более габаритной модели принтера – помощнее; старые матричные печатные устройства имели достаточно мощные электродвигатели;

  • для трёхкоординатного устройства, понадобится три ШД. Хорошо, если в каждом найдётся 5 проводов управления, функционал мини-станка возрастёт. Стоит оценить величину параметров: напряжения питания, сопротивления обмотки и угла поворота ШД за один шаг. Для подключения каждого ШД нужен отдельный контроллер;
  • с помощью винтов, вращательное движение от ШД преобразуется в линейное. Для достижения высокой точности, многие считают нужным иметь шарико-винтовые пары (ШВП), но это комплектующая не из дешевых. Подбирая для монтажа блоков набор гаек и крепежных винтов, выбирают их со вставками из пластика, это уменьшает трение и исключает люфты;

  • вместо двигателя шагового типа, можно взять обычный электромотор, после небольшой доработки;
  • вертикальная ось, которая обеспечивает перемещение инструмента в 3D, охвачивая весь координатный стол. Её изготовляют из алюминиевой плиты. Важно, чтобы размеры оси были подогнаны к габаритам устройства. При наличии муфельной печи, ось можно отлить по размерам чертежей.

Ниже – чертёж, сделанный в трёх проекциях: вид сбоку, сзади, и сверху.

Максимум внимания – станине

Необходимая жесткость станку обеспечивается за счёт станины. На нее устанавливают подвижной портал, систему рельсовых направляющих, ШД, рабочую поверхность, ось Z и шпиндель.

К примеру, один из создателей самодельного станка ЧПУ, несущую раму сделал из алюминиевого профиля Maytec – две детали (сечение 40х80 мм) и две торцевые пластины толщиной 10 мм из этого же материала, соединив элементы алюминиевыми уголками. Конструкция усилена, внутри рамы сделано рамку из профилей меньших размеров в форме квадрата.

Станина монтируется без использования соединений сварного типа (сварным швам плохо удаётся переносить вибронагрузки). В качестве крепления лучше использовать Т-образные гайки. На торцевых пластинах предусмотрена установка блока подшипников для установки ходового винта. Понадобится подшипник скольжения и шпиндельный подшипник.

Основной задачей сделанному своими руками станку с ЧПУ умелец определил изготовление деталей из алюминия. Поскольку ему подходили заготовки с максимальной толщиной 60 мм, он сделал просвет портала 125 мм (это расстояние от верхней поперечной балки до рабочей поверхности).

Этот непростой процесс монтажа

Собрать самодельные ЧПУ станки, после подготовки комплектующих, лучше строго по чертежу, чтобы они работали. Процесс сборки, применяя ходовые винты, стоит выполнять в такой последовательности:

  • знающий умелец начинает с крепления на корпусе первых двух ШД – за вертикальной осью оборудования. Один отвечает за горизонтальное перемещение фрезерной головки (рельсовые направляющие), а второй за перемещение в вертикальной плоскости;
  • подвижной портал, перемещающийся по оси X, несет фрезерный шпиндель и суппорт (ось z). Чем выше будет портал, тем большую заготовку удастся обработать. Но у высокого портала, в процессе обработки, – снижается устойчивость к возникающим нагрузкам;

  • для крепления ШД оси Z, линейных направляющих используют переднюю, заднюю, верхнюю, среднюю и нижнюю пластины. Там же сделайте ложемент фрезерного шпинделя;
  • привод собирают из тщательно подобранных гайки и шпильки. Чтобы зафиксировать вал электродвигателя и присоединить к шпильке, используют резиновую обмотку толстого электрокабеля. В качестве фиксатора могут быть винты, вставленные в нейлоновую втулку.

Затем начинается сборка остальных узлов и агрегатов самоделки.

Монтируем электронную начинку станка

Чтобы сделать своими руками ЧПУ станок и управлять ним, надо оперировать правильно подобранным числовым программным управлением, качественными печатными платами и электронными комплектующими (особенно если они китайские), что позволит на станке с ЧПУ реализовать все функциональные возможности, обрабатывая деталь сложной конфигурации.

Для того, чтобы не было проблем в управлении, у самодельных станков с ЧПУ, среди узлов, есть обязательные:

  • шаговые двигатели, некоторые остановились напримере Nema;
  • порт LPT, через который блок управления ЧПУ можно подключить к станку;
  • драйверы для контроллеров, их устанавливают на фрезерный мини-станок, подключая в соответствии со схемой;

  • платы коммутации (контроллеры);
  • блок электропитания на 36В с понижающим трансформатором, преобразующем в 5В для питания управляющей цепи;
  • ноутбук или ПК;
  • кнопка, отвечающая за аварийную остановку.

Только после этого станки с ЧПУ проходят проверку (при этом умелец сделает его пробный запуск, загрузив все программы), выявляются и устраняются имеющиеся недостатки.

Вместо заключения

Как видите, сделать ЧПУ, которое не уступит китайским моделям, – реально. Сделав комплект запчастей с нужным размером, имея качественные подшипники и достаточно крепежа для сборки, эта задача – под силу тем, кто заинтересован в программной технике. Примера долго искать не придётся.

На фото внизу – некоторые образцы станков, имеющих числовое управление, которые сделаны такими же умельцами, не профессионалами. Ни одна деталь не делалась поспешно, произвольным размером, а подходящая к блоку с большой точностью, с тщательным выверением осей, применением качественных ходовых винтов и с надёжными подшипниками. Верно утверждение: как соберешь, так и работать будешь.

На ЧПУ выполняется обработка дюралевой заготовки. Таким станком, который собрал умелец, можно выполнить много фрезерных работ.

Еще один образец собранного станка, где плиту ДВП используют как рабочий стол, на котором возможно изготовление печатной платы.

Каждый, кто начнет делать первое устройство, скоро перейдет и к другим станкам. Возможно, захочет испытать себя в качестве сборщика сверлильного агрегата и, незаметно, пополнит армию умельцев, собравших немало самодельных устройств. Занятия техническим творчеством сделают жизнь людей интересной, разнообразной и насыщенной.

В наше время всё более частым становится производство мелких деталей из древесины, для тех или иных конструкций. Также в магазинах можно встретить разнообразие красивых объёмных картин, выполненных на древесном полотне. Такие операции совершаются при помощи фрезерных станков с числовым программным управлением.Точность деталей или картин из дерева достигается за счёт управления с компьютера, специализированной программой.

Фрезерный станок по обработке древесины с числовым управлением представляет собой высокопрофессиональную машину, созданную по последнему слову техники.

Вся работа заключается в обработке специальной фрезой по дереву, которой можно совершить работу по вырезке маленьких деталей из древесного материала, создание красивых рисунков. Работа осуществляется за счёт подачи сигналов на шаговые двигатели, которые, в свою очередь, двигают фрезер по трём осям.

За счёт чего и происходит высокоточная обработка. Как правило, вручную такие работы совершить невозможно так качественно. Поэтому фрезерные станки по дереву с ЧПУ является большой находкой для столяров.

Предназначение

Издавна, фрезеровка предназначалась для строгальных работ с древесиной. Но двигатель прогресса движется строго вперёд и в наше время, к таким станкам создали числовое программное управление. На этом этапе, фрезеровальный станок может выполнять разнообразные действия, которые касаются обработки дерева:

  1. Вырезание различных деталей из массива древесины.
  2. Отрезание лишних частей заготовки.
  3. Возможность делать пазы и отверстия различных диаметров.
  4. Рисование сложных орнаментов, посредством фрезы.
  5. 3D Трёхмерные изображения на массиве дерева.
  6. Полноценное мебельное производство и многое другое.

Какой бы ни была поставлена задача, она будет выполнена с высокой точностью и аккуратностью.

Совет: Во время работы на самодельном с ЧПУ оснащением, необходимо плавно снимать толщину древесины, иначе ваша деталь будет испорчена или сожжена фрезой!

Разновидность

В современном технологическом мире различают следующие виды фрезеровочных станков по дереву с числовым управлением:

Стационарные

Эти машины размешаются на производствах, так как имеют огромные размеры и вес. Зато такое оборудование способно изготавливать продукцию в больших объёмах.

Ручные

Это самодельные устройства или устройства из готовых наборов. Эти станки можно смело устанавливать в вашем гараже или собственной мастерской. К таким относятся следующие подвиды:

Оборудование с использованием портала, с числовым управлением

Непосредственно сам фрезер способен передвигаться по двум декартовым осям X и Z. У такого типа станка высокая жёсткость при обработке на изгибы. Конструкция портального фрезерного станка с числовым управлением достаточно проста в своём исполнении. Многие столяры начинают познание станков с ЧПУ именно с такого подтипа. Однако в данном случае размер заготовки будет ограничен размером самого портала.

С числовым управлением и передвижным порталом

Конструкция данного подтипа немного усложнена.

Передвижной портал

Именно этот тип передвигает фрезер по всем трём декартовым осям, по X, Z и Y. В данном случае необходимо будет использовать прочную направляющую для оси X, так как вся большая нагрузка будет направляться именно на неё.

С передвижным порталом очень удобен для создания печатных плат. По оси Y есть возможность обрабатывать длинные детали.

Фреза движется по оси Z.

Станок, на котором фрезеровочная деталь способна передвигаться в вертикальном направлении

Этот подтип обычно используют при доработке производственных образцов или при переделке сверлильного оборудования в гравировально - фрезерное.

Рабочее поле, то есть сама столешница имеет размеры 15х15 сантиметров, что делает невозможным обработку крупных деталей.

Такой тип не очень удобен в эксплуатации.

Безпортальный с числовым управлением

Этот тип станка очень сложен в своей конструкции, однако является самым производительным и удобным.

Заготовки можно обрабатывать длинной до пяти метров, даже если ось X составляет 20 сантиметров.

Такой подтип крайне не подходит для первого опыта, так как требует навыков на этом оборудовании.

Ниже мы рассмотрим конструкцию собственноручного фрезерного станка по дереву с ЧПУ, разберём принципы его работы. Узнаем, как сделать данное детище и как налаживается такое оборудование.

Устройство и принцип работы

Основными деталями устройства фрезерования являются следующие детали:

Станина

Непосредственно сама конструкция станка, на которой располагаются все остальные детали.

Суппорта

Узел, который представляет собой крепление для поддержки передвижения автоматического инструмента.

Рабочий стол

Область, на которой производится вся необходимая работа.

Вал шпинделя или фрезер

Инструмент, который выполняет фрезеровочные работы.

Фреза для обработки древесины

Инструмент, а точнее приспособление для фрезера, различных величин и форм, с помощью которых производится обработка древесины.

ЧПУ

Скажем так мозг и сердце всей конструкции. Программное обеспечение исполняет точный контроль всей работы.

Работа заключается в программном управлении. На компьютере установлена специализированная программа, именно она преобразует загруженные в неё схемы в специальные коды, которые программа распределяет на контроллер, а затем на шаговые двигатели. Шаговые двигатели, в свою очередь, передвигают фрезер по координатным осям Z, Y ,X, за счёт чего и происходит обработка деревянной заготовки.

Выбор комплектующих

Основным этапом в изобретении самодельного фрезерного станка является выбор комплектующих деталей. Ведь выбрав плохой материал, может пойти что - нибудь не так в

Пример сборки из алюминиевой рамы.

самой работе. Обычно используют простые материалы, такие как: алюминий, древесина (массив, МДФ), оргстекло. Для правильной и точной работы всей конструкции важно разработать всю конструкцию суппортов.

Совет: Перед сборкой своими руками , необходимо проверить все, уже подготовленные детали на совместимость.

Проверить, нет ли где загвоздки, которая будет мешать. А главное, чтобы не допустить различного рода колебаний, так как это напрямую приведёт к некачественному фрезерованию.

Существуют некоторые назначения по подбору рабочих элементов, которые помогут в создании, а именно:

Направляющие

Схема направляющих чпу для фрезера.

Для них используют прутья диаметром 12 миллиметров. Для оси X, длинна прута, составляет 200 миллиметров, а для оси Y длина составляет 90 миллиметров.

Использование направляющих позволит выполнить высокоточную установку движущих деталей

Суппорта

Суппорт фрезерного ЧПУ станка.

Суппорт в сборке.

Для этих комплектующих можно использовать текстолитовый материал. Довольно прочный материал в своём роде. Как правило, размеры текстолитовой площадки составляет 25х100х45 милли

Блок фиксации фрезера

Пример каркаса для фиксации фрезера.

Также можно использовать текстолитовый каркас. Размеры непосредственно зависят от имеющегося у вас инструмента.

Шаговые двигатели или серводвигатели
Блок питания
Контроллер

Электронная плата, которая распределяет электричество на шаговые двигатели, чтобы перемещать их по осям.

Совет: При паянии платы необходимо использовать конденсаторы и резисторы в специальных SMD корпусах (для изготовления корпусов таких деталей используют алюминий, керамика, пластик). Это уменьшит габариты платы, а также внутреннее пространство в конструкции будет оптимизировано.

Сборка

Схема самодельного станка с числовым программным управлением

Сборка не займёт у вас слишком много времени. Единственное что, процесс настройки будет самым долгим во всём процессе изготовления.

Для начала

Необходимо разработать схему и чертежи будущего станка с числовым управлением.

Если вам не хочется этого делать, то можно скачать чертежи из интернета. По всем размерам подготовить все необходимые детали.

Проделать все необходимые отверстия

Предназначенные для подшипников и направляющих. Главное соблюдать все необходимые размеры, иначе работа станка будет нарушена. Представлена схемас описанием расположения механизмов. Она позволит вам получить общее представление, особенно если вы собираете его в первый раз.

Когда все элементы и детали механизма у вас готовы, то можно смело приступать к сборке. Первым делом собирается станина оборудования.

Каркас

Должен быть геометрически правильно собран. Все углы должны быть ровненькими и равнозначными. Когда каркас готов, можно монтировать направляющие оси, рабочий стол, суппорта. Когда эти элементы установлены, можно установить фрезер, либо шпиндель.

Остаётся последний шаг - электроника. Установка электроники является основным этапом в сборке. К установленным на станке шаговым двигателям подключается контроллер, который и будет отвечать за их работу.

Далее контроллер подключается к компьютеру на котором уже должна быть установлена специальная программа для управления. Широко применяется торговая марка Arduino , которая производит и поставляет аппаратное оборудование.

Когда всё подключено и находится в режиме готовности, самое время запустить пробную заготовку. Для этого подойдёт любая древесина, которая не будет выходить за пределы рабочего стола. Если ваша заготовка прошла обработку и всё в порядке, то можно приступать к полноценному изготовлению того или иного продукта фрезерования.

Техника безопасности

Безопасность с фрезеровальным оборудованием является основой основ. Если не беречь себя, можно угодить в больницу с серьёзными травмами. Все правила для безопасности одинаковы, однако ниже будут перечислены самые основные:

  1. Необходимо заземлить ваше оборудование, во избежание ударов током.
  2. Не допускать детей к станку.
  3. Ни есть и не пить на рабочем столе.
  4. Одежду следует подбирать соответствующую.
  5. Не обрабатывать громоздкие детали, которые превышают размеры рабочего стола, станочного оборудования.
  6. Не бросать различные инструменты на рабочую область станка.
  7. Не использовать материал, (металл, пластик и т.д.).

Видео обзоры

Видео обзор деталей к станку и где их взять:

Видео обзор работы фрезерного станка по дереву:

Видео обзор электроники

Итак, вы решили построить самодельный ЧПУ фрезерный станок или, может быть, вы просто над этим только задумываетесь и не знаете с чего начать? Есть много преимуществ в наличии машины с ЧПУ. Домашние станки могут производить фрезерование и резать практически все материалы. Будь вы любитель или мастер, это открывает большие горизонты для творчества. Тот факт, что один из станков может оказаться в вашей мастерской, еще более соблазнителен.

Есть много причин, по которым люди хотят построить собственный фрезерный станок ЧПУ своими руками. Как правило, это происходит потому, что мы просто не можем позволить себе купить его в магазине или от производителя, и в этом нет ничего удивительного, ведь цена на них немаленькая. Или же вы можете быть похожи на меня и получать массу удовольствия от собственной работы и создания чего-то уникального. Вы можете просто заниматься этим для получения опыта в машиностроении.

Личный опыт

Когда я впервые начал разрабатывать, продумывать и делать первый ЧПУ фрезер своими руками, на создание проекта ушел примерно один день. Затем, когда начал покупать части, я провел небольшое исследование. И нашел кое-какие сведения в различных источниках и форумах, что привело к появлению новых вопросов:

  • Мне действительно нужны шарико-винтовые пары, или обычные шпильки и гайки будут работать вполне нормально?
  • Какой линейный подшипник лучше, и могу ли я его себе позволить?
  • Двигатель с какими параметрами мне нужен, и лучше использовать шаговик или сервопривод?
  • Деформируется ли материал корпуса слишком сильно при большом размере станка?
  • И т.п.

К счастью, на некоторые из вопросов я смог ответить благодаря своей инженерно-технической базе, оставшейся после учебы. Тем не менее, многие из проблем, с которыми я бы столкнулся, не могли быть рассчитаны. Мне просто нужен был кто-то с практическим опытом и информацией по этому вопросу.

Конечно, я получил много ответов на свои вопросы от разных людей, многие из которых противоречили друг другу. Тогда мне пришлось продолжить исследования, чтобы выяснить, какие ответы стоящие, а какие – мусор.

Каждый раз, когда у меня возникал вопрос, ответ на который я не знал, мне приходилось повторять тот же процесс. По большему счету это связано с тем, что у меня был ограниченный бюджет и хотелось взять лучшее из того, что можно купить за мои деньги. Такая же ситуация у многих людей, создающих самодельный фрезерный станок с ЧПУ.

Комплекты и наборы для сборки фрезеров с ЧПУ своими руками

Да, есть доступные комплекты станков для ручной сборки, но я еще не видел ни одного, который можно было бы подстроить под определенные нужды.

Также нет возможности вносить изменения в конструкцию и тип станка, а ведь их много, и откуда вы знаете, какой из них подойдет именно вам? Независимо от того, насколько хороша инструкция, если конструкция продумана плохо, то и конечная машина будет плохой.

Вот почему вам нужно быть осведомленным относительно того, что вы строите и понимать какую роль играет каждая деталь!

Руководство

Это руководство нацелено на то, чтобы не дать вам совершить те же ошибки, на которые я потратил свое драгоценное время и деньги.

Мы рассмотрим все компоненты вплоть до болтов, глядя на преимущества и недостатки каждого типа каждой детали. Я расскажу о каждом аспекте проектирования и покажу, как создать ЧПУ фрезерный станок своими руками. Проведу вас через механику к программному обеспечению и всему промежуточному.

Имейте в виду, что самодельные чертежи станков с ЧПУ предлагают немного способов решения некоторых проблем. Это часто приводит к «неаккуратной» конструкции или неудовлетворительному функционированию машины. Вот почему я предлагаю вам сначала прочитать это руководство.

ДАВАЙТЕ НАЧНЕМ

ШАГ 1: Ключевые конструктивные решения

В первую очередь необходимо рассмотреть следующие вопросы:

  1. Определение подходящей конструкции конкретно для вас (например, если будете делать станок по дереву своими руками).
  2. Требуемая площадь обработки.
  3. Доступность рабочего пространства.
  4. Материалы.
  5. Допуски.
  6. Методы конструирования.
  7. Доступные инструменты.
  8. Бюджет.

ШАГ 2: Основание и ось X-оси

Тут рассматриваются следующие вопросы:

  1. Проектирование и построение основной базы или основания оси X.
  2. Жестко закрепленные детали.
  3. Частично закрепленные детали и др.

ШАГ 3: Проектирование козловой оси Y

  1. Проектирование и строительство портальной оси Y.
  2. Разбивка различных конструкций на элементы.
  3. Силы и моменты на портале и др.

ШАГ 4: Схема сборки оси Z

Здесь рассматриваются следующие вопросы:

  1. Проектирование и сборка сборки оси Z.
  2. Силы и моменты на оси Z.
  3. Линейные рельсы / направляющие и расстояние между подшипниками.
  4. Выбор кабель-канала.

ШАГ 5: Линейная система движения

В этом пункте рассматриваются следующие вопросы:

  1. Подробное изучение систем линейного движения.
  2. Выбор правильной системы конкретно для вашего станка.
  3. Проектирование и строительство собственных направляющих при малом бюджете.
  4. Линейный вал и втулки или рельсы и блоки?

ШАГ 6: Компоненты механического привода

В этом пункте рассматриваются следующие аспекты:

  1. Детальный обзор частей привода.
  2. Выбор подходящих компонентов для вашего типа станка.
  3. Шаговые или серводвигатели.
  4. Винты и шарико-винтовые пары.
  5. Приводные гайки.
  6. Радиальные и упорные подшипники.
  7. Муфта и крепление двигателя.
  8. Прямой привод или редуктор.
  9. Стойки и шестерни.
  10. Калибровка винтов относительно двигателей.

ШАГ 7: Выбор двигателей

В этом шаге необходимо рассмотреть:

  1. Подробный обзор двигателей с ЧПУ.
  2. Типы двигателей с ЧПУ.
  3. Как работают шаговые двигатели.
  4. Типы шаговых двигателей.
  5. Как работают сервомоторы.
  6. Типы серводвигателей.
  7. Стандарты NEMA.
  8. Выбор правильного типа двигателя для вашего проекта.
  9. Измерение параметров мотора.

ШАГ 8: Конструкция режущего стола

  1. Проектирование и строительство собственных столов при малом бюджете.
  2. Перфорированный режущий слой.
  3. Вакуумный стол.
  4. Обзор конструкций режущего стола.
  5. Стол можно вырезать при помощи фрезерного станка с ЧПУ по дереву.

ШАГ 9: Параметры шпинделя

В этом шаге рассматриваются следующие вопросы:

  1. Обзор шпинделей с ЧПУ.
  2. Типы и функции.
  3. Ценообразование и затраты.
  4. Варианты монтажа и охлаждения.
  5. Системы охлаждения.
  6. Создание собственного шпинделя.
  7. Расчет нагрузки стружки и силы резания.
  8. Нахождение оптимальной скорости подачи.

ШАГ 10: Электроника

В этом пункте рассматриваются следующие вопросы:

  1. Панель управления.
  2. Электропроводка и предохранители.
  3. Кнопки и переключатели.
  4. Круги MPG и Jog.
  5. Источники питания.

ШАГ 11: Параметры контроллера Программного Управления

В этом шаге рассматриваются следующие вопросы:

  1. Обзор контроллера ЧПУ.
  2. Выбор контроллера.
  3. Доступные опции.
  4. Системы с замкнутым контуром и разомкнутым контуром.
  5. Контроллеры по доступной цене.
  6. Создание собственного контроллера с нуля.

ШАГ 12. Выбор программного обеспечения

В этом пункте рассматриваются следующие вопросы:

  1. Обзор программного обеспечения, связанного с ЧПУ.
  2. Подбор программного обеспечения.
  3. Программное обеспечение CAM.
  4. Программное обеспечение САПР.
  5. Програмное обеспечение NC Controller.

——————————————————————————————————————————————————–

Сложная обработка различных материалов давно перестала быть уделом заводских цехов. Еще двадцать лет назад, максимум, что могли себе позволить домашние мастера – это фигурное выпиливание лобзиком.

Сегодня, ручные фрезеры и режущие лазеры можно запросто купить в магазине бытового инструмента. Для линейной обработки предусмотрены различные направляющие. А как быть с вырезанием сложных фигур?

Элементарные задачи можно выполнить с помощью шаблона. Однако такой способ имеет недостатки : во-первых, надо изготовить собственно шаблон, во-вторых, у механического лекала есть ограничения по размеру закруглений. И наконец, погрешность таких приспособлений слишком велика.

Выход давно найден: станок с ЧПУ позволяет вырезать из фанеры своими руками такие сложные фигуры, о которых «операторы лобзиков» могут лишь мечтать.

Устройство представляет собой систему координатного позиционирования режущего инструмента, управляемую компьютерной программой. То есть, обрабатывающая головка движется по заготовке, в соответствии с заданной траекторией. Точность ограничена лишь размерами режущей насадки (фреза или лазерный луч).


Возможности таких станков безграничны. Существуют модели с двухмерным и трехмерным позиционированием. Однако стоимость их настолько высока, что приобретение может быть оправдано лишь коммерческим использованием. Остается своими руками собрать ЧПУ станок.

Принцип работы координатной системы

Основа станка – мощная рама. За основу берется идеально ровная поверхность. Она же служит рабочим столом. Второй базовый элемент – это каретка, на которой закрепляется инструмент. Это может быть дремель, ручной фрезер, лазерная пушка – в общем, любое устройство, способное обрабатывать заготовку. Каретка должна двигаться строго в плоскости рамы.

Для начала рассмотрим двухмерную установку


В качестве рамы (основы) для станка ЧПУ, сделанного своими руками, можно использовать поверхность стола. Главное, после юстировки всех элементов, конструкция больше не перемещается, оставаясь жестко прикрученной к основе.

Для перемещения в одном направлении (условно назовем его X), размещаются две направляющих. Они должны быть строго параллельны друг другу. Поперек устанавливается мостовая конструкция, также состоящая из параллельных направляющих. Вторая ось – Y.


Задавая вектора перемещения по осям X и Y, можно с высокой точностью установить каретку (а вместе с ней и режущий инструмент) в любую точку на плоскости рабочего стола. Выбирая соотношение скоростей перемещения по осям, программа заставляет инструмент двигаться непрерывно по любой, самой сложной траектории.

Рама станка из ЧПУ сделана руками умельца, видео

Существует еще одна концепция: каретка с инструментом закреплена неподвижно, перемещается рабочий стол с заготовкой. Принципиальной разницы нет. Разве что размеры основания (а стало быть, и заготовки) ограничены. Зато упрощается схема подачи питания на рабочий инструмент, не надо беспокоиться о гибких кабелях питания.

И так, в рамках этой статьи-инструкции я хочу, что бы вы вместе с автором проекта, 21 летним механиком и дизайнером, изготовили свой собственный . Повествование будет вестись от первого лица, но знайте, что к большому своему сожалению, я делюсь не своим опытом, а лишь вольно пересказываю автора сего проекта.

В этой статье будет достаточно много чертежей , примечания к ним сделаны на английском языке, но я уверен, что настоящий технарь все поймет без лишних слов. Для удобства восприятия, я разобью повествование на «шаги».

Предисловие от автора

Уже в 12 лет я мечтал построить машину, которая будет способна создавать различные вещи. Машину, которая даст мне возможность изготовить любой предмет домашнего обихода. Спустя два года я наткнулся на словосочетание ЧПУ или если говорить точнее, то на фразу "Фрезерный станок с ЧПУ" . После того как я узнал, что есть люди способные сделать такой станок самостоятельно для своих нужд, в своем собственном гараже, я понял, что тоже смогу это сделать. Я должен это сделать ! В течение трех месяцев я пытался собрать подходящие детали, но не сдвинулся с места. Поэтому моя одержимость постепенно угасла.

В августе 2013 идея построить фрезерный станок с ЧПУ вновь захватила меня. Я только что окончил бакалавриат университета промышленного дизайна, так что я был вполне уверен в своих возможностях. Теперь я четко понимал разницу между мной сегодняшним и мной пятилетней давности. Я научился работать с металлом, освоил техники работы на ручных металлообрабатывающих станках, но самое главное я научился применять инструменты для разработки. Я надеюсь, что эта инструкция вдохновит вас на создание своего станка с ЧПУ!

Шаг 1: Дизайн и CAD модель

Все начинается с продуманного дизайна. Я сделал несколько эскизов, чтобы лучше прочувствовать размеры и форму будущего станка. После этого я создал CAD модель используя SolidWorks. После того, как я смоделировал все детали и узлы станка, я подготовил технические чертежи. Эти чертежи я использовал для изготовления деталей на ручных металлообрабатывающих станках: и .

Признаюсь честно, я люблю хорошие удобные инструменты. Именно поэтому я постарался сделать так, чтобы операции по техническому обслуживанию и регулировке станка осуществлялись как можно проще. Подшипники я поместил в специальные блоки для того, чтобы иметь возможность быстрой замены. Направляющие доступны для обслуживания, поэтому моя машина всегда будет чистой по окончанию работ.




Файлы для скачивания «Шаг 1»

Габаритные размеры

Шаг 2: Станина

Станина обеспечивает станку необходимую жесткость. На нее будет установлен подвижной портал, шаговые двигатели, ось Z и шпиндель, а позднее и рабочая поверхность. Для создания несущей рамы я использовал два алюминиевых профиля Maytec сечением 40х80 мм и две торцевые пластины из алюминия толщиной 10 мм. Все элементы я соединил между собой на алюминиевые уголки. Для усиления конструкции внутри основной рамы я сделал дополнительную квадратную рамку из профилей меньшего сечения.

Для того, чтобы в дальнейшем избежать попадания пыли на направляющие, я установил защитные уголки из алюминия. Уголок смонтирован с использованием Т-образных гаек, которые установлены в один из пазов профиля.

На обоих торцевых пластинах установлены блоки подшипников для установки приводного винта.



Несущая рама в сборе



Уголки для защиты направляющих

Файлы для скачивания «Шаг 2»

Чертежи основных элементов станины

Шаг 3: Портал

Подвижной портал - исполнительный орган вашего станка, он перемещается по оси X и несет на себе фрезерный шпиндель и суппорт оси Z. Чем выше портал, тем толще заготовка, которую вы можете обработать. Однако, высокий портал менее устойчив к нагрузкам которые возникают в процессе обработки. Высокие боковые стойки портала выполняют роль рычагов относительно линейных подшипников качения.

Основная задача, которую я планировал решать на своем фрезерном станке с ЧПУ - это обработка алюминиевых деталей. Поскольку максимальная толщина подходящих мне алюминиевых заготовок 60 мм, я решил сделать просвет портала (расстояние от рабочей поверхности до верхней поперечной балки) равным 125 мм. В SolidWorks все свои измерения я преобразовал в модель и технические чертежи. В связи со сложностью деталей, я обработал их на промышленном обрабатывающем центре с ЧПУ, это дополнительно мне позволило обработать фаски, что было бы весьма затруднительно сделать на ручном фрезерном станке по металлу.





Файлы для скачивания «Шаг 3»

Шаг 4: Суппорт оси Z

В конструкции оси Z я использовал переднюю панель, которая крепится к подшипникам перемещения по оси Y, две пластины для усиления узла, пластину для крепления шагового двигателя и панель для установки фрезерного шпинделя. На передней панели я установил две профильные направляющие по которым будет происходить перемещение шпинделя по оси Z. Обратите внимание на то, что винт оси Z не имеет контропоры внизу.





Файлы для скачивания «Шаг 4»

Шаг 5: Направляющие

Направляющие обеспечивают возможность перемещения во всех направлениях, обеспечивают плавность и точность движений. Любой люфт в одном из направлений может стать причиной неточности в обработке ваших изделий. Я выбрал самый дорогой вариант - профилированные закаленные стальные рельсы. Это позволит конструкции выдерживать высокие нагрузки и обеспечит необходимую мне точность позиционирования. Чтобы обеспечить параллельность направляющих, я использовал специальный индикатор во время их установки. Максимальное отклонение относительно друг друга составило не более 0,01 мм.



Шаг 6: Винты и шкивы

Винты преобразуют вращательное движение от шаговых двигателей в линейное. При проектировании своего станка вы можете выбрать несколько вариантов этого узла: Пара винт-гайка или шарико-винтовая пара (ШВП). Винт-гайка, как правило, больше подвергается силам трения при работе, а также менее точна относительно ШВП. Если вам необходима повышенная точность, то однозначно необходимо остановить свой выбор на ШВП. Но вы должны знать, что ШВП достаточно дорогое удовольствие.