Устройство защиты от перенапряжения первичных линий питания. Устройство защиты перенапряжений (узип) - схема подключения


В связи с широким распространением полупроводниковой и микропроцессорной техники в производстве и в быту, вопрос защиты электрических сетей до 1000 В от коммутационных и грозовых перенапряжений сегодня становится особенно актуальным.

Дорогостоящая техника, изготовленная с применением полупроводниковых элементов, имеет слабую изоляцию, и даже незначительные повышения напряжения способны вывести ее из строя.

В соответствии с принятой номенклатурой, ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений (УЗИП) .

Принцип действия схож с принципом работы ограничителей перенапряжения (ОПН) и основывается на нелинейности вольтамперной характеристики защитного элемента. При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают 3 ступени защиты, каждая из которых рассчитана на определенный уровень импульсных токов и крутизны фронта волны.

УЗИП I - устройство 1-го класса устанавливается на вводе в здание и выполняет функцию первой ступени защиты от перенапряжений. Условия его работы наиболее тяжелые. Рассчитано такое устройство на ограничение импульсных токов с крутизной фронта волны 10/350 мкс. Амплитуда импульсных токов 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.

УЗИП II - применяют в качестве защиты от перенапряжений, вызванных переходными процессами в распределительных сетях, а также в качестве второй ступени после УЗИП I. Его защитный элемент рассчитан на импульсные токи с формой волны 8/20 мкс. Амплитуда токов находится в пределах 15-20 кА.

УЗИП III - применяют для защиты сетей от остаточных явлений перенапряжений после устройств первого и второго класса. Устанавливаются они непосредственно у защищаемого оборудования и нормируются импульсными токами с формой волны 1,2/50 мкс и 8/20 мкс.


Устройство . Устройства всех классов имеют схожее строение, различие заключается в характеристиках защитного элемента. Конструктивно, устройство состоит из неподвижного основания и съемного модуля. Основание крепится непосредственно к конструкциям распределительных шкафов на DIN- рейку.

Съемный модуль с помощью ножевых контактов вставляется в основание. Такая конструкция позволяет легко производить замену испорченного нелинейного элемента самостоятельно. В качестве нелинейного элемента применяют варисторы и разрядники различного исполнения. Их исполнение может быть одно-, двух- и трехполюсным, выбор зависит от количества проводов защищаемой сети.

Зарубежные производители оснащают свои изделия индикаторами срабатывания устройства, что позволяет визуально определить его исправность. В более дорогих моделях могут быть установлены терморасцепители, предотвращающие перегрев нелинейного элемента, не рассчитанного на длительное протекание токов.


Схема подключения . Для выполнения защиты от перенапряжения в электроустановках, токоведущие части намеренно соединяют с заземляющим контуром посредством элементов с нелинейной вольтамперной характеристикой.

В электроустановках до 1000 В для применения УЗИП обязательно наличие заземляющего проводника РЕ с нормируемым сопротивлением. Несмотря на то, что сами устройства рассчитаны на большие импульсные токи и напряжения, они не пригодны для длительного повышения напряжения и протекания токов утечки.

Многими производителями рекомендуется защищать УЗИП с помощью плавких вставок. Данные рекомендации объясняются более быстрым срабатыванием предохранителей в зонах импульсных токов, а также частыми повреждениями контактной системы автоматических выключателей при разрывании токов такой величины.

При выполнении трехступенчатой защиты от перенапряжений, устройства должны располагаться на определенном расстоянии друг от друга по длине провода. Например, от УЗИП I до УЗИП II расстояние должно быть не менее 15 м по длине соединяющего их провода. Соблюдение этого условия позволяет селективно отработать разным ступеням, и надежно погасить все возмущения в сети.

Расстояние между II и III ступенью 5 метров. При невозможности разнести устройства на предписанные расстояния, применяют согласующий дроссель, представляющий собой активно-индуктивное сопротивление, эквивалентное сопротивлению проводов.


Особенности выбора . Самым ответственным участком защиты от грозовых перенапряжений является ввод в здание. УЗИП на первом участке ограничивает самый большой импульсный ток. Ножевые контакты для УЗИП первого класса представляют наибольшую уязвимость устройства.

Импульсные токи амплитудой 25-50 кА сопровождаются значительными электродинамическими силами, которые могут привести к выскакиванию сменного модуля из контактов ножевого типа и лишить электрическую сеть защиты от перенапряжения, поэтому, в качестве первой ступени лучше применять УЗИП без съемного модуля.

При выборе защиты первого класса отдавать предпочтение лучше устройствам на базе разрядников. Изготовление варисторного УЗИП на импульсный ток более 20 кА - дело достаточно трудоемкое и затратное, поэтому, их серийный выпуск неоправдан.

Так, если изготовителем на варисторном устройстве указан номинальный Iimp более 20 кА, следует с осторожностью отнестись к такой покупке; возможно производитель вводит вас в заблуждение.

УЗИП с применением разрядника с открытой камерой представляет опасность при срабатывании, поэтому его применение обосновано в распределительных шкафах, где присутствие человека исключено, когда защищаемый участок находится в работе. Протекание импульсного тока по контактам разрядника неизбежно ведет к зажиганию дуги.

В момент горения дуги, раскаленные газы и брызги расплавленного металла могут нанести вред здоровью и жизни человека. Шкаф, в котором установлено УЗИП такого типа, должен быть выполнен из несгораемого материала, с уплотнением всех отверстий.

В качестве нелинейного элемента могут применяться также разрядники со схемой поджигающего электрода. С помощью дополнительного электрода можно регулировать момент пробоя искрового промежутка и открытия разрядника. Применение поджигающего электрода позволяет снизить уровень импульсного напряжения и согласовать работу УЗИП разного класса.

Однако если схема управления поджигающим электродом выйдет из строя, на выходе получится защита с неизвестной характеристикой, возможно, не гарантирующая не только правильную работу, но работоспособность вообще.


Современные бытовые приборы зачастую имеют в своих блоках питания встроенную защиту от импульсных перенапряжений, однако, ресурс типичных решений на варисторах исчерпывается максимум 30 случаями срабатывания, да и то если ток при нештатной ситуации не превысит 10 кА. Рано или поздно встроенная в прибор защита может подвести, а незащищенные от перенапряжения приборы попросту выйдут из строя и принесут своим владельцам массу хлопот. А между тем, причинами опасных импульсных перенапряжений могут стать: гроза, ремонтные работы, броски при коммутации мощных реактивных нагрузок и мало ли что еще.

Для предотвращения таких неприятных ситуаций и предназначены устройства защиты от импульсных перенапряжений (сокращенно - УЗИП), которые принимают на себя аварийный импульс перенапряжения, не давая ему вывести из строя включенные в сеть электрические приборы.

Принцип действия УЗИП довольно прост: в обычном режиме ток внутри устройства течет через проводящий шунт, и далее через нагрузку, подключенную в этот момент к сети; но между шунтом и заземлением установлен защитный элемент - варистор или разрядник, сопротивление которого в нормальном режиме составляет мегаомы, и если вдруг возникнет перенапряжение, то защитный элемент мгновенно перейдет в проводящее состояние, и ток устремится через него к заземлению.

В момент срабатывания УЗИП, сопротивление в петле фаза-ноль снизится до критического, и бытовая техника будет спасена, ибо линия будет практически накоротко шунтирована через защитный элемент УЗИП. Когда напряжение в линии стабилизируется, защитный элемент УЗИП вновь перейдет в непроводящее состояние, и ток к нагрузке снова потечет через шунт.

Существуют и широко распространены три класса устройств защиты от импульсных перенапряжений:

Устройства защиты класса I предназначены для защиты от импульсов перенапряжений с характеристикой волны 10/350 мкс, это значит, что максимально допустимое время нарастания импульса перенапряжения до максимума и спада до номинального значения не должно превышать 10 и 350 микросекунд соответственно; при этом допустим кратковременный ток от 25 до 100 кА, такие импульсные токи возникают при разряде молнии, когда она попадает в ЛЭП на расстоянии ближе 1,5 км к потребителю.

Устройства этого класса выполняются на разрядниках, а их установка осуществляется в главном распределительном щите или вводно-распределительном устройстве на вводе в здание.

УЗИП класса II предназначены для защиты от кратковременных импульсных помех, и устанавливаются в распределительные щиты. Они способны обеспечить защиту от импульсов перенапряжения с параметрами 8/20 мкс, при силе тока от 10 до 40 кА. В УЗИП этого класса применяются варисторы.

Поскольку ресурс варисторов ограничен, то в конструкцию УЗИП на их основе добавлен механический предохранитель, который просто отпаяет шунт от варистора, когда его сопротивление перестанет быть адекватным безопасному защитному режиму. Это, по сути, тепловая защита, предохраняющая устройство от перегрева и возгорания. Спереди на модуле есть связанный с предохранителем цветовой индикатор его состояния, и если варистор нужно будет заменить, то это легко можно будет понять.

Аналогичным образом устроены и УЗИП класса III, с тем лишь отличием, что максимальный ток внутреннего варистора не должен превысить 10 кА.

Такими же параметрами обладают и встроенные в бытовую технику традиционные схемы импульсной защиты, однако, при дублировании их внешним УЗИП класса III, вероятность преждевременного отказа техники сводится к минимуму.

Справедливости ради стоит отметить, что для надежной защиты оборудования важно установить УЗИПы как I, так и II и III классов защиты. Это необходимо соблюсти, так как мощное УЗИП класса I не сработает при коротких импульсах невысокого перенапряжения просто в силу своей малой чувствительности, а менее мощное не справится с большим током, с которым справится УЗИП класса I.

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции :

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН) , ограничитель импульсных напряжений — ОИН , но все они имеют одинаковые функции и принцип работы.

  1. Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после , с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

  1. Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B ) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С ) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D ) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

  1. Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.
  1. Схема подключения УЗИП

Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке ):

Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

Принципиальные схемы подключения УЗИП выглядят следующим образом.

Если в вашем доме установлено множество дорогой бытовой техники, лучше позаботиться об организации комплексной защиты электросети. В этой статье мы расскажем об устройствах защиты от импульсных перенапряжений, зачем они нужны, какие бывают и как устанавливаются.

Природа импульсных перенапряжений и их влияние на технику

Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.

Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы , подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.

1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод

Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.

Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.

Как устроен и как работает УЗИП

УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.

При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.

Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.

В чем различие между классами защиты

В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.

Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.

УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.

Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.

Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.

Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20-30 циклами.

Есть ли необходимость в УЗИП, оценка рисков

Полный перечень требований к организации защиты от ИП изложен в МЭК 61643-21, определить обязательность установки можно по стандарту МЭК 62305-2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.

В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.

Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.

Установка устройств в ГРЩ

Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.

При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.

УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.

Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей

При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.

Установки дросселей можно избежать, если протяженность кабельной линии между устройствами превышает 10 метров. По этой причине УЗИП I класса монтируют на фасаде еще до счетчика, защищая от перенапряжений учетный узел, а второй и третий класс устанавливают, соответственно, на ВРУ и этажных/групповых щитках.

Стандарт ГОСТ 13109-97 не дает никаких предельных и допустимых значений импульса, а только дает нам форму этого импульса и определение. Мы полагаем при измерениях, что в сети импульсов не должно случаться. И если они будут, то нужно будет разбираться и искать виноватых. При наших измерениях в сетях 0,4 кВ мы с проблемами импульса не сталкивались. Это и не мудрено — меряя на стороне 0,4 кВ любой импульс поглотиться или срежется ограничителями перенапряжений, но это тема для другой статьи. Но как говорится предупрежден, значит вооружен. Поэтому дадим в статье, то что знаем.

вот эти определения из ГОСТ 13109-97 :

импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд;

— амплитуда импульса - максимальное мгновенное значение импульса напряжения;

— длительность импульса - интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня;

От чего возникают импульсы?

Импульсные напряжения вызываются грозовыми явлениями, а также переходными процессами при коммутациях в системе электроснабжения. Грозовые и коммутационные импульсы напряжения существенно различаются по характеристикам и форме.

Импульсное напряжение – это резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня в течение 10-15 мкс (грозовой импульс) и 10-15 мс (коммутационный импульс). И если длительность фронта грозового импульса тока на порядок меньше, чем коммутационного, то амплитуда грозового импульса может быть на несколько порядков выше . Измеренное максимальное значение тока разряда молнии в зависимости от его полярности может изменяться от 200 до 300 кА, что происходит редко. Обычно этот ток достигает 30-35 кА .

На рисунке 1 приведена осциллограмма импульса напряжения, а на рисунке 2 – его общий вид.

Удары молнии в линии электропередачи или вблизи них в землю приводят к появлению импульсных напряжений, опасных для изоляции линий и электрооборудования подстанций. Основной причиной выхода из строя изоляции объектов электроэнергетики, перерывов электроснабжения и затрат на его восстановление является поражение молнией этих объектов.

Рисунок 1 — Осциллограмма импульса напряжения

Рисунок 2 — Общий вид импульса напряжения

Грозовые импульсы – распространенное явление. При разрядах молния попадает в грозозащитное устройство зданий и подстанций, соединенных кабелями высокого и низкого напряжения, линиями связи и управления. При одной молнии могут наблюдаться до 10 импульсов, следующих друг за другом с интервалом от 10 до 100 мс. При ударе молнии в заземляющее устройство его потенциал относительно удаленных точек повышается и достигает миллиона вольт. Это способствует тому, что в петлях, оборудованных кабельными и воздушными связями, индуцируется напряжение от нескольких десятков вольт до многих сотен киловольт. При попадании молнии в воздушные линии вдоль них распространяется волна перенапряжения, которая достигает сборных шин подстанции. Волна перенапряжения ограничивается либо прочностью изоляции при ее пробое, либо остаточным напряжением защитных разрядников, сохраняя при этом остаточное значение, достигающее десятков киловольт.

Коммутационные импульсы напряжения возникают при коммутациях индуктивных (трансформаторы, двигатели) и емкостных (конденсаторные батареи, кабели) нагрузках. Возникают они при КЗ и его отключении. Значения коммутационных импульсов напряжения зависят от типа сети (воздушная или кабельная), вида коммутации (включение или отключение), характера нагрузки и типа коммутационного устройства (предохранитель, разъединитель, выключатель). Коммутационные импульсы тока и напряжения имеют колебательный затухающий повторяющийся характер, обусловленный горением дуги.

Значения коммутационных импульсов напряжений длительностью на уровне 0,5 амплитуды импульса (см. рис. 3.22), равной 1-5 мс, приведены в таблице .

Импульс напряжения характеризуется амплитудой U имп.а, максимальным значением напряжения U имп, длительностью переднего фронта, т.е. интервалом времени от начала импульса t нач до момента достижения им максимального (амплитудного) значения t амп и длительностью импульса напряжения по уровню 0,5 его амплитуды t амп 0,5 . Две последние временные характеристики показывают в виде дроби ∆t амп /t имп 0,5 .

Значение коммутационных импульсных напряжений

Список использованных источников

1.Кужекин И.П. , Ларионов В.П., Прохоров В.Н. Молния и молниезащита. М.: Знак, 2003

2. Карташев И.И. Управление качеством электроэнергии / И.И. Карташев, В.Н. Тульский, Р.Г. Шамонов и др.: под ред. Ю.В. Шарова. – М. : Издательский дом МЭИ, 2006. – 320 с.: ил.

3. ГОСТ 13109-97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 1999-01-01. Минск: ИПК Изд-во стандартов, 1998. 35 с.