Воздушная подушка своими руками. Амфибия на «подушке


Ховеркрафт – это транспортное средство, способное перемещаться как по воде, так и по суше. Подобное средство передвижения совсем не сложно сделать своими руками.

Это аппарат, где совмещены функции автомобиля и лодки. В результате этого получилось судно на воздушной подушке (СВП), обладающее уникальными характеристиками проходимости, без потерь скорости при движении по воде благодаря тому, что корпус судна перемещается не по воде, а над ее поверхностью. Это дало возможность двигаться по воде гораздо быстрее, за счет того, что сила трения водных масс не оказывает никакого сопротивления.

Хотя судно на воздушной подушке и обладает рядом достоинств, его область применения не получила столь широкого распространения. Дело в том, что не по любой поверхности этот аппарат может передвигаться без особых проблем. Для него нужна мягкая песчаная или грунтовая почва, без наличия камней и других преград. Наличие асфальта и других твердых оснований может привести в негодность днище судна, которое создает воздушную подушку при движении. В связи с этим, “ховеркрафты” используются там, где нужно больше плыть и меньше ехать. Если наоборот, то лучше воспользоваться услугами автомобиля-амфибии с колесами. Идеальные условия их применения – это труднопроходимые болотистые места, где кроме судна на воздушной подушке (СВП) никакой другой транспорт проехать не сможет. Поэтому СВП и не получили столь широкого распространения, хотя подобным транспортом пользуются спасатели некоторых стран, таких как Канада, например. По некоторым данным, СВП находятся на вооружении стран НАТО.

Как приобрести подобный транспорт или как его сделать своими руками?

Ховеркрафт – это дорогой вид транспорта, средняя цена которого доходит до 700 тыс. рублей. Транспорт типа “скутер” стоит раз в 10 дешевле. Но при этом следует учитывать тот факт, что транспорт заводского изготовления всегда отличается лучшим качеством, по сравнению с самоделками. Да и надежность транспортного средства выше. К тому же, заводские модели сопровождаются заводскими гарантиями, чего не скажешь о конструкциях, собранных в гаражах.

Заводские модели всегда были ориентированы на узкопрофессиональное направление, связанное либо с рыбалкой, либо с охотой, либо со специальными службами. Что касается самодельных СВП, то они встречаются крайне редко и тому есть свои причины.

К таким причинам следует отнести:

  • Довольно высокую стоимость, а также дорогое обслуживание. Основные элементы аппарата быстро изнашиваются, что требует их замены. Причем каждый такой ремонт выльется в копеечку. Подобный аппарат позволит себе купить только богатый человек, да и то он подумает лишний раз, стоит ли с ним связываться. Дело в том, что такие мастерские – это такое же редкое явление, как и само транспортное средство. Поэтому, выгоднее приобрести гидроцикл или квадроцикл для перемещения по воде.
  • Работающее изделие создает много шума, поэтому передвигаться можно только в наушниках.
  • При движении против ветра существенно падает скорость и значительно увеличивается расход горючего. Поэтому, самодельные СВП – это скорее демонстрация своих профессиональных способностей. Судном не только нужно уметь управлять, но и уметь его ремонтировать, без существенных затрат средств.

Процесс изготовления СВП своими руками

Во-первых, собрать в домашних условиях хорошее СВП не так-то и просто. Для этого необходимо иметь возможности, желание и профессиональные навыки. Не помешает и техническое образование. Если отсутствует последнее условие, то лучше от постройки аппарата отказаться, иначе можно разбиться на нем при первом же испытании.

Все работы начинаются с эскизов, которые потом трансформируются в рабочие чертежи. При создании эскизов следует помнить, что этот аппарат должен быть максимально обтекаемым, чтобы не создавать лишнего сопротивления при движении. На этом этапе следует учитывать тот фактор, что это, практически, воздушное средство передвижения, хотя оно и находится очень низко к поверхности земли. Если все условия взяты во внимание, то можно приступать к разработке чертежей.

На рисунке представлен эскиз СВП Канадской службы спасения.

Технические данные аппарата

Как правило, все судна на воздушной подушке способны развивать приличную скорость, которую не сможет развить никакая лодка. Это если учесть, что лодка и СВП имеют одинаковую массу и мощность двигателя.

При этом, предложенная модель одноместного судна на воздушной подушке рассчитана на пилота весом от 100 до 120 килограммов.

Что касается управления транспортным средством, то оно довольно специфичное и в сравнении с управлением обычной моторной лодкой никак не вписывается. Специфика связана не только с наличием большой скорости, но и способом передвижения.

Основной нюанс связан с тем, что на поворотах, особенно на больших скоростях, судно сильно заносит. Чтобы подобный фактор свести к минимуму, необходимо на поворотах наклоняться в сторону. Но это кратковременные трудности. Со временем техника управления осваивается и на СВП можно показывать чудеса маневренности.

Какие нужны материалы?

В основном понадобится фанера, пенопласт и специальный конструкторский набор от ”Юниверсал Ховеркрафт”, куда входит все необходимое для самостоятельной сборки транспортного средства. В комплект входит изоляция, винты, ткань для воздушной подушки, специальный клей и другое. Этоn набор можно заказать на официальном сайте, заплатив за него 500 баксов. В комплект также входит несколько вариантов чертежей, для сборки аппарата СВП.

Поскольку чертежи уже имеются, то форму судна следует привязать к готовому чертежу. Но если имеется техническое образование, то, скорее всего, будет построено судно не похожее ни на какой из вариантов.

Днище судна изготавливается из пенопласта, толщиной 5-7 см. Если нужен аппарат для перевозки больше, чем одного пассажира, то снизу крепится еще один такой лист пенопласта. После этого, в днище делаются два отверстия: одно предназначается для потока воздуха, а второе для обеспечения подушки воздухом. Вырезаются отверстия с помощью электрического лобзика.

На следующем этапе осуществляют герметизацию нижней части транспортного средства от влаги. Для этого, берется стекловолокно и клеится на пенопласт с помощью эпоксидного клея. При этом, на поверхности могут образоваться неровности и воздушные пузыри. Чтобы от них избавиться, поверхность покрывается полиэтиленом, а сверху еще и одеялом. Затем, на одеяло ложится еще один слой пленки, после чего она фиксируется к основанию скотчем. Из этого “бутерброда” лучше выдуть воздух, воспользовавшись пылесосом. По истечении 2-х или 3-х часов эпоксидная смола застынет и днище будет готовым к дальнейшим работам.

Верх корпуса может иметь произвольную форму, но учитывать законы аэродинамики. После этого приступают к креплению подушки. Самое главное, чтобы в нее поступал воздух без потерь.

Трубу для мотора следует использовать из стирофома. Здесь главное, угадать с размерами: если труба будет слишком большой, то не получится той тяги, которая необходима для подъема СВП. Затем следует уделить внимание креплению мотора. Держатель для мотора – это своеобразный табурет, состоящий из 3-х ножек, прикрепленных к днищу. Сверху этой “табуретки” и устанавливается двигатель.

Какой нужен двигатель?

Имеется два варианта: первый вариант – это применение двигателя от компании “Юниверсал Ховеркрафт” или использование любого подходящего движка. Это может быть двигатель от бензопилы, мощности которого вполне хватит для самодельного устройства. Если хочется получить более мощное устройство, то следует брать и более мощный двигатель.

Желательно использовать лопасти заводского изготовления (те, что в наборе), так как они требуют тщательной балансировки и в домашних условиях это сделать достаточно сложно. Если этого не сделать, то разбалансированные лопасти разобьют весь двигатель.

Насколько надежным может быть СВП?

Как показывает практика, заводские судна на воздушной подушке (СВП) приходится ремонтировать где-то один раз в полгода. Но это неполадки несущественные и не требуют серьезных затрат. В основном, отказывает подушка и система подачи воздуха. Вообще-то, вероятность того, что самодельное устройство развалится в процессе эксплуатации, очень мала, если “ховеркрафт” собран грамотно и правильно. Чтобы это случилось, нужно на большой скорости налететь на какое-нибудь препятствие. Несмотря на это, воздушная подушка все же способна защитить устройство от серьезных поломок.

Спасатели, работающие на подобных аппаратах в Канаде, ремонтируют их быстро и грамотно. Что касается подушки, то ее реально отремонтировать в условиях обычного гаража.

Подобная модель будет надежной, если:

  • Используемые материалы и детали были надлежащего качества.
  • На аппарате установлен новый двигатель.
  • Все соединения и крепления выполнены надежно.
  • Изготовитель обладает всеми необходимыми навыками.

Если СВП изготавливается как игрушка для ребенка, то в данном случае желательно, чтобы присутствовали данные хорошего конструктора. Хотя и это не показатель для того, чтобы детей сажать за руль этого транспортного средства. Это ведь не автомобиль и не лодка. Управлять СВП не так просто, как кажется.

С учетом этого фактора, нужно сразу приступать к изготовлению двухместного варианта, чтобы контролировать действия того, кто будет сидеть за рулем.


Все началось с того, что я хотел сделать какой-нибудь проект и вовлечь в него внука. У меня большой инженерный опыт за плечами, поэтому простых проектов я не искал, и вот, как то раз смотря ТВ, я увидел лодку, которая двигалась за счет пропеллера. "Классная штука!" - подумал я, и начал шерстить просторы интернета в поисках хоть какой то информации.

Мотор мы взяли со старой газонокосилки, а саму планировку купили (стоит 30$) . Она хороша тем, что требует только одного мотора, большинство же подобных лодок требуют двух движков. В той же компании мы купили пропеллер, пропеллерный хаб, ткань для воздушной подушки, эпоксидную смолу, стекловолокно и шурупы (все это они продают в одном наборе). Остальные материалы довольно банальные и могут быть куплены в любом строительном магазине. Итоговый бюджет немногим превысил 600$.

Шаг 1: Материалы


Из материалов понадобятся: пенопласт, фанера, кит от Universal Hovercraft (~500$). В наборе есть все мелочи, которые понадобятся для выполнения проекта: план, стекловолокно, пропеллер, хаб для пропеллера, ткань для воздушной подушки, клей, эпоксидная смола, втулки и т.д. Как и писал в описании, на все материалы ушло порядка 600$.

Шаг 2: Делаем каркас


Берем пенопласт (толщина 5 см) и вырезаем из него прямоугольник 1.5 на 2 метра. Такие размеры обеспечат плавучесть веса в ~270 кг. Если 270 кг кажется мало, можно взять еще один такой же лист и прикрепить его понизу. Лобзиком вырезаем две дырки: одна для входящего потока воздуха и другая для надува подушки.

Шаг 3: Покрываем стеловолокном


Нижняя часть корпуса должна быть водонепроницаемой, для этого покрываем ее стекловолокном и эпоксидкой. Чтобы все высохло как надо, без неровностей и шероховатостей, нужно избавиться от воздушных пузырей, которые могут возникнуть. Для этого можно использовать промышленный пылесос. Покрываем стекловолокно слоем пленки, затем покрываем одеялом. Покрытие нужно, чтобы одеяло не приклеилось к волокну. Затем одеяло покрываем еще одним слоем пленки и приклеиваем к полу липкой лентой. Делаем небольшой разрез, засовываем в него хобот пылесоса и включаем. В таком положении оставляем на пару часов, когда процедура завершится, пластик можно будет отскрести от стекловолокна без каких либо усилий, он к нему не приклеится.

Шаг 4: Нижняя часть корпуса готова


Нижняя часть корпуса готова, и выглядит сейчас примерно так как на фото.

Шаг 5: Делаем трубу


Труба делается из стирофома, толщиной в 2.5 см. Сложно описать весь процесс, но в плане он расписан подробно, у нас никаких проблем на этом этапе не возникло. Отмечу лишь что диск из фанеры временный, и на последующих шагах будет снят.

Шаг 6: Держатель для мотора


Конструкция не хитрая, сооружается из фанеры и брусков. Размещается точно по центру корпуса лодки. Крепится на клей и шурупы.

Шаг 7: Пропеллер


Пропеллер можно приобрести в двух видах: готовый, и "полуфабрикат". Готовый как правило гораздо дороже, и покупая полуфабрикат можно хорошо сэкономить. Так мы и сделали.

Чем ближе лопасти пропеллера к краям воздухоотвода, тем эффективнее работает последний. Как только вы определились с зазором, можно отшлифовать лопасти. Как только шлифовка закончена, нужно обязательно провести балансировку лопастей, чтобы в будущем не было вибраций. Если одна из лопастей весит больше другой, то вес нужно выровнять, но не урезанием концов, и шлифовкой. Как только баланс найден, можно нанести пару слоев краски чтобы он сохранился. Для безопасности желательно наконечники лопастей покрасить в белый цвет.

Шаг 8: Воздушная камера


Воздушная камера разделяет потоки входящего и исходящего воздуха. Делается из 3 мм фанеры.

Шаг 9: Установка воздушной камеры


Воздушная камера крепится на клей, но можно и на стекловолокно, я предпочитаю всегда использовать волокно.

Шаг 10: Направляющие


Направляющие делаются из 1 мм фанеры. Чтобы придать им прочности, покройте одним слоем стекловолокна. На фото не очень хорошо видно, но все же можно заметить, что оба направляющих соединены вместе по низу алюминиевой планкой, делается это чтобы они работали синхронно.

Шаг 11: Придадим лодке форму, добавим боковые панели


Очертания формы/контура делаются на днище, после чего по очертаниям крепится на шурупы деревянная планка. Фанера в 3 мм гнется хорошо, и ложится прямо по нужной нам форме. Далее крепим и клеим 2 см балку вдоль верхнего края боков из фанеры. Добавляем поперечную балку, и устанавливаем рукоятку, которая будет рулем. К ней крепим тросики отходящие от направляющих лопастей установленных ранее. Теперь можно раскрасить лодку, желательно нанести несколько слоев. Мы выбрали белый цвет, с ним даже при длительных прямых лучах солнца корпус практически не греется.

Должен сказать, что плывет она резво, и это радует, но удивило меня рулевое управление. На средних скоростях повороты получаются, а вот на большой скорости лодку сначала заносит в бок, а потом еще по инерции некоторое время она движется назад. Хотя немного приноровившись я понял, что наклоняя тело в сторону поворота и немного сбавляя газ можно заметно снизить этот эффект. Точную скорость сказать сложно, т.к на лодке нет спидометра, но по ощущениям она вполне себе хорошая, и после лодки еще остается приличный след и волны.

В день теста лодку опробовало около 10 человек, самый грузный весил около 140 кг, и она его выдержала, хотя выжать скорость которая доступна нам у него конечно же не вышло. С весом до 100 кг лодка идет резво.

Вступить в клуб

узнавайте о самых интересных инструкциях раз в неделю, делитесь своими и участвуйте в розыгрышах!

Прототипом представляемой амфибийной машины стал аппарат на воздушной подушке (АВП) под названием «Аэроджип», публикация о котором была в журнале . Как и предшествующий аппарат, новая машина – одномоторная, одновинтовая с распределённым воздушным потоком. Эта модель тоже трёхместная, с расположением пилота и пассажиров по Т-образной схеме: пилот впереди посередине, а пассажиры – по бокам, сзади. Хотя ничто не мешает и четвёртому пассажиру расположиться за спиной водителя – длины сиденья и мощности винтомоторной установки вполне хватает.

Новая машина, кроме улучшенных технических характеристик, имеет ряд конструктивных особенностей и даже нововведений, повышающих её надёжность в эксплуатации и живучесть – всё-таки амфибия – «птица» водоплавающая. А «птицей» её называю потому, что и над водой, и над землёй передвигается она всё же по воздуху.

Конструктивно новая машина состоит из четырёх основных частей: стеклопластикового корпуса, пневмобаллона, гибкого ограждения (юбки) и винтомоторной установки.

Ведя рассказ о новой машине, неизбежно придётся повторяться – ведь конструкции во многом схожи.

Корпус амфибии идентичен прототипу как по размерам, так и по конструкции – стеклопластиковый, двойной, объёмный, состоит из внутренней и наружной оболочек. Здесь же стоит отметить, что отверстия во внутренней оболочке в новом аппарате расположены теперь не у верхней кромки бортов, а примерно посередине между ней и днищевой кромкой, что обеспечивает более быстрое и стабильное создание воздушной подушки. Сами отверстия теперь не продолговатые, а круглые, диаметром 90 мм. Их около 40 штук и расположены они равномерно по бортам и спереди.

Каждая оболочка выклеивалась в своей матрице (использованы от предыдущей конструкции) из двух-трёх слоёв стеклоткани (а днище – из четырёх слоёв) на полиэфирном связующем. Конечно, эти смолы уступают винил-эфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене – они значительно дешевле, что немаловажно. Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее +22°С.

1 – сегмент (комплект 60 шт.); 2 – баллон; 3 – швартовная утка (3 шт.); 4 – ветровой козырёк; 5 – поручень (2 шт.); 6 – сетчатое ограждение воздушного винта; 7 – наружная часть кольцевого канала; 8 – руль направления (2 шт.); 9 – рычаг управления рулями; 10 – лючок в тоннеле для доступа к топливному баку и аккумулятору; 11 – сиденье пилота; 12 – пассажирский диван; 13 – кожух двигателя; 14 – весло (2 шт.); 15 – глушитель; 16 – наполнитель (пенопласт); 17 – внутренняя часть кольцевого канала; 18 – фонарь ходового огня; 19 – воздушный винт; 20 – втулка воздушного винта; 21 – приводной зубчатый ремень; 22 – узел крепления баллона к корпусу; 23 – узел крепления сегмента к корпусу; 24 – двигатель на мотораме; 25 – внутренняя оболочка корпуса; 26 – наполнитель (пенопласт); 27 – наружная оболочка корпуса; 28 – разделительная панель нагнетаемого воздушного потока

Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7 -8 мм (у оболочек корпуса – около 4 мм). Перед выкпейкой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесён тонкий слой (до 0,5 мм) гелькоута (цветного лака) красного цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и одна сторона стекпомата (с более мелкими порами) промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате). Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (3-4 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезались при вы-клейке «по-мокрому».

а – внешняя оболочка;

б – внутренняя оболочка;

1 – лыжа(дерево);

2 – подмоторная плита (дерево)

После изготовления по отдельности наружной и внутренней оболочек они состыковывались, скреплялись струбцинами и саморезами, а затем склеивались по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40 -50 мм, из которого были изготовлены сами оболочки. После присоединения оболочек к кромке лепестковыми заклёпками прикреплялась по периметру вертикальная бортовая планка из 2-мм дюралюминиевой полосы шириной не менее 35 мм.

Дополнительно кусочками пропитанной смолой стеклоткани следует аккуратно проклеить все углы и места вворачивания крепёжных деталей. Наружная оболочка сверху покрыта гелькоутом – полиэфирной смолой с акриловыми добавками и воском, придающими блеск и водостойкость.

Стоит отметить, что по такой же технологии (по ней изготавливались наружная и внутренняя оболочки) выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, кожух двигателя, ветроотбойник, тоннель и сиденье водителя. Бензобак (промышленный из Италии) на 12,5 л вставляется внутрь корпуса, в консоль, перед скреплением нижней и верхней части корпусов.

внутренний оболочка корпуса с выпускными воздушными отверстиями для создания воздушной подушки; выше отверстий – ряд тросовых клипс для зацепления концов платка сегмента юбки; к днищу приклеены две деревянные лыжи

Тем, кто только начинает работать со стеклопластиком, рекомендую начинать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с лыжами и полосой из алюминиевого сплава, диффузором и рулями направления – от 80 до 95 кг.

Пространство между оболочками служит воздуховодом по периметру аппарата от кормы по обоим бортам к носу. Верхняя и нижняя части этого пространства заполнены строительным пенопластом, который обеспечивает оптимальное сечение воздушных каналов и дополнительную плавучесть (а соответственно и живучесть) аппарату. Куски пенопласта склеивались между собой всё тем же полиэфирным связующим, а к оболочкам приклеивались полосами стеклоткани, тоже пропитанной смолой. Далее из воздушных каналов воздух выходит наружу через равномерно расположенные отверстия диаметром 90 мм в наружной оболочке, «упирается» в сегменты юбки и создаёт под аппаратом воздушную подушку.

К днищу наружной оболочки корпуса для защиты от повреждений приклеены снаружи пара продольных лыж из деревянных брусков, а в кормовой части кокпита (то есть изнутри) – под-моторная деревянная плита.

Баллон . Новая модель катера на воздушной подушке имеет чуть ли не вдвое большее водоизмещение (350 – 370 кг), чем прежняя. Этого удалось добиться за счёт установки надувного баллона между корпусом и сегментами гибкого ограждения (юбкой). Баллон выклеен из плёночного на лавсановой основе ПХВ материала Уіпуріап финского производства плотностью 750 г/м 2 по форме корпуса в плане. Материал прошёл испытания на больших промышленных судах на воздушной подушке, таких как «Хиус», «Пегас», «Марс». Для повышения живучести баллон может состоять из нескольких отсеков (в данном случае – из трёх, каждый имеет свой клапан наполнения). Отсеки в свою очередь могут разделяться и вдоль пополам продольными перегородками (но такой их вариант исполнения пока ещё только в проекте). При такой конструкции пробитый отсек (или даже два) позволит продолжить движение по маршруту, а тем более добраться до берега для ремонта. Для экономного раскроя материала баллон разделён на четыре секции: носовая, две боркормовая. Каждая секция, в свою очередь, склеивается из двух частей (половинок) оболочки: нижней и верхней – их выкройки зеркально отображённые. В данном варианте баллона отсеки и секции не совпадают.

а – внешняя оболочка; б – внутренняя оболочка;
1 – носовая секция; 2 – бортовая секция (2 шт.); 3 – кормовая секция; 4 – перегородка (3 шт.); 5 – клапаны (3 шт.); 6 – ликтрос; 7 – фартук

По верху баллона приклеен «ликтрос» – полоса из сложенного вдвое материала Vinyplan 6545 «Арктик», с вложенным по сгибу плетёным капроновым шнуром, пропитанным клеем «900И». «Ликтрос» прикладывается к бортовой планке, и с помощью пластмассовых болтов баллон крепится к алюминиевой полосе, закреплённой на корпусе. Такая же полоса (только без вложенного шнура) приклеена к баллону и снизу-спереди («на полвосьмого»), так называемый «фартук» – к которому привязываются верхние части сегментов (язычки) гибкого ограждения. Позднее к передней части баллона был приклеен резиновый бампер-отбойник.


Мягкое эластичное ограждение
«Аэроджипа» (юбка) состоит из отдельных, но одинаковых элементов -сегментов, выкроенных и сшитых из плотной лёгкой ткани или плёночного материала. Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух.

Я использовал опять же материал Vinyplan 4126, только плотностью поменьше (240 г/м 2), но вполне подойдёт отечественная ткань типа перкаль.

Сегменты имеют несколько меньший размер, чем на «безбаллонной» модели. Выкройка сегмента несложная, и сшить его можно самому даже вручную, либо сварить токами высокой частоты (ТВС).

Сегменты привязываются язычком крышки к ликпазу баллона (два – одним концом, при этом узелки находятся внутри под юбкой) по всему периметру «Аэроамфибии». Два же нижних угла сегмента с помощью капроновых строительных хомутиков подвешиваются свободно к стальному тросику диаметром 2 – 2,5 мм, обхватывающим нижнюю часть внутренней оболочки корпуса. Всего в юбке размещается до 60 сегментов. Стальной трос диаметром 2,5 мм крепится к корпусу посредством клипс, которые в свою очередь притягиваются к внутренней оболочке лепестковыми заклёпками.

1 – платок (материал «Виниплан 4126»); 2 – язычок (материал «Виниплан 4126»); 3 – накладка (ткань «Арктик»)

Такое крепление сегментов юбки не намного превышает время замены вышедшего из строя элемента гибкого ограждения, по сравнению с предыдущей конструкцией, когда каждый крепился по отдельности. Но как показала практика, юбка оказывается работоспособной даже при выходе из строя до 10% сегментов и частой замены их и не требуется.

1 – наружная оболочка корпуса; 2 – внутренняя оболочка корпуса; 3- накладка (стеклопластик) 4 - планка (дюралюминий, полоса 30х2); 5 – шуруп-саморез; 6 – ликтрос баллона; 7 – пластмассовый болт; 8 – баллон; 9 – фартук баллона; 10 – сегмент; 11 – шнуровка; 12 – клипса; 13-хомут(пластмассовый); 14-трос d2,5; 15-вытяжнаязаклёпка; 16-люверс

Винтомоторная установка состоит из двигателя, шестилопастного воздушного винта (вентилятора) и трансмиссии.

Двигатель – РМЗ-500 (аналог «Ротакс 503») от снегохода «Тайга». Выпускается ОАО «Русская механика» по лицензии австрийской фирмы Rotax. Мотор двухтактный, с лепестковым впускным клапаном и принудительным воздушным охлаждением. Зарекомендовал себя как надёжный, достаточно мощный (около 50 л.с.) и не тяжёлый (около 37 кг), а главное -сравнительно недорогой агрегат. Топливо – бензин марки АИ-92 в смеси с маслом для двухтактных двигателей (например, отечественное МГД-14М). Средний расход топлива – 9 – 10 л/ч. Смонтирован двигатель в кормовой части аппарата, на мотораме, прикреплённой к днищу корпуса (а точнее -к подмоторной деревянной плите). Моторама стала выше. Это сделано для удобства очистки кормовой части кокпита от снега и льда, которые попадают туда через борта и скапливаются там, и замерзают при остановке.

1 – выходной вал двигателя; 2 – ведущий зубчатый шкив (32 зуба); 3 – зубчатый ремень; 4 – ведомый зубчатый шкив; 5 – гайка М20 крепления оси; 6 – дистанционные втулки (3 шт.); 7 – подшипник (2 шт.); 8 – ось; 9 – втулка винта; 10 – задняя подкосная опора; 11 – передняя надмоторная опора; 12 - передняя подкосная опора-двунога (на чертеже не показана, см. фото); 13 – наружная щёчка; 14 – внутренняя щёчка

Воздушный винт – шестилопастный, фиксированного шага, диаметром 900 мм. (Была попытка установить два пятилопастных соосных винта, но она оказалась неудачной). Втулка винта -дюралюминиевая, литая. Лопасти – стеклопластиковые, с напылением гелькоутом. Ось втулки винта была удлинена, хотя на ней остались прежние подшипники 6304. Смонтирована ось на стойке над двигателем и закреплена здесь двумя распорками: двухлучевой – спереди и трёхлучевой – сзади. Перед винтом расположена сетчатая решётка ограждения, а сзади – перья воздушного руля.

Передача крутящего момента (вращения) с выходного вала двигателя на втулку воздушного винта осуществляется через зубчатый ремень с передаточным отношением 1:2,25 (ведущий шкив имеет 32 зуба, а ведомый – 72).

Воздушный поток от винта распределён перегородкой в кольцевом канале на две неравные части (примерно 1:3). Меньшая его часть идёт под днище корпуса на создание воздушной подушки, а большая – на образование пропульсивной силы (тяги) для передвижения. Несколько слов об особенностях вождения амфибии, конкретно – о начале движения. При работе двигателя на холостом ходу аппарат остаётся неподвижным. При увеличении числа его оборотов, амфибия сначала приподнимается над опорной поверхностью, а затем начинает движение вперёд при оборотах от 3200 – 3500 в минуту. В этот момент важно, особенно при трогании с грунта, чтобы пилот сначала приподнял заднюю часть аппарата: тогда кормовые сегменты ни за что не зацепятся, а передние проскользят по неровностям и препятствиям.

1 – основание (стальной лист s6, 2 шт.); 2 – портальная стойка (стальной лист s4,2 шт.); 3 – перемычка (стальной лист s10, 2 шт.)

Управление «Аэроджипом» (изменение направления движения) осуществляется аэродинамическими рулями направления, закреплёнными шарнирно за кольцевым каналом. Отклонение руля производится посредством двухплечего рычага (руля мотоциклетного типа) через итальянский боуденовский трос, идущий к одной из плоскостей аэродинамического руля. Другая плоскость соединена с первой жёсткой тягой. На левой рукоятке рычага закреплена манетка управления дроссельной заслонкой карбюратора или «курок» от снегохода «Тайга».

1 – руль; 2 – боуденовский трос; 3 – узел крепления оплётки к корпусу (2 шт.); 4 – боуденовская оплётка троса; 5 – рулевая панель; 6 – рычаг; 7 – тяга (качалка условно не показана); 8 – подшипник (4 шт.)

Торможение осуществляется «сбросом газа». При этом пропадает воздушная подушка и аппарат корпусом ложится на воду (или лыжами – на снег или грунт) и останавливается за счёт трения.

Электрооборудование и приборы . Аппарат снабжён аккумуляторной батареей, тахометром со счётчиком моточасов, вольтметром, индикатором температуры головки двигателя, галогенными фарами, кнопкой и чекой выключения зажигания на руле и др. Двигатель запускается электростартёром. Возможна установка любых других приборов.

Амфибийный катер получил название «Рыбак-360». Он прошёл ходовые испытания на Волге: в 2010 г. на слёте компании «Велход» в посёлке Эммаус под Тверью, в Нижнем Новгороде. Участвовал по просьбе Москомспорта в показательных выступлениях на празднике, посвящённом дню ВМФ в Москве на Гребном канале.

Технические данные «Аэроамфибии»:

Габаритные размеры, мм:
длина……………………………………………………………………..3950
ширина…………………………………………………………………..2400
высота…………………………………………………………………….1380
Мощность двигателя, л.с……………………………………………….52
Масса, кг…………………………………………………………………….150
Грузоподъёмность, кг………………………………………………….370
Запас топлива, л…………………………………………………………….12
Расход топлива, л/ч………………………………………………..9 - 10
Преодолеваемые препятствия:
подъём, град……………………………………………………………….20
волна, м……………………………………………………………………0,5
Крейсерская скорость, км/ч:
по воде……………………………………………………………………….50
по грунту……………………………………………………………………54
по льду……………………………………………………………………….60

М. ЯГУБОВ Почётный изобретатель г. Москвы

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

В России существуют целые сообщества людей, который собирают и разрабатывают любительские СВП. Это очень интересное, но, к сожалению, сложное и далеко не дешевое занятие.

Изготовление корпуса КВП

Известно, что суда на воздушной подушке испытывают гораздо меньшие нагрузки, чем обычные глиссирующие лодки и катера. Всю нагрузку на себя берет гибкое ограждение. Кинетическая энергия при движении не передается на корпус и это обстоятельство делает возможным монтаж любого корпуса, без сложных рассчетов прочности. Единственное ограничение для корпуса любительского КВП — вес. Это обязательно следует учитывать при выполнении теоретических чертежей.

Так же важным аспектом является степень сопротивления встречному воздушному потоку. Ведь аэродинамические характеристики напрямую влияют на расход топлива, который, даже у любительских СВП, сравним с расходом среднего внедорожника. Профессиональный аэродинамический проект стоит больших денег, поэтому конструкторы-любители делают все "на глаз", просто заимствуюя линии и формы у лидеров автопрома или авиации. Про авторские права в данном случае можно не думать.


Для изготовления корпуса будущего катера можно использовать рейки из ели. В качестве обшивки — фанеру толщиной 4 мм, которая крепится при помощи эпоксидного клея. Оклейка фанеры плотной тканью (например, стеклотканью) нецелесообразна в виду значительного увеличения веса конструкции. Это наиболее технологически не сложный способ.

Наиболее искушенные представители сообщества создают корпуса из стеклопластика по собственным компьютерным 3d-моделям или на глаз. Для начала создается прототип и материала типа пенопласта с которого снимается матрица. Далее корпуса делаются точно так же, как лодки и катера из стеклопластика.


Непотопляемости корпуса можно достигнуть множеством способов. Например при помощи установки в бортовые отсеки перегородок, непроницаемых для воды. А еще лучше - можно заполнить эти отсеки пенопластом. Можно установить под гибкое ограждение надувные баллоны, на подобии лодок ПВХ.

Силовая установка СВП

Основной вопрос - сколько, и он встречает конструктора на всем пути проектирования силовой системы. Сколько двигателей, сколько должна весить рама и двигатель, сколько вентиляторов, сколько лопастей, сколько оборотов, сколько градусов сделать угол атаки и в конце концов сколько это будет стоить. Именно данный этап является наиболее затратным, ведь в кустарных условиях невозможно соорудить двигатель внутреннего сгорания или лопасть вентилятора с нужным КПД и уровнем шума. Такие вещи приходится покупать, и стоят они не дешего.


Сложнейшим этапом сборки оказался монтаж гибкого ограждения катера, удерживающего воздушную подушку точно под корпусом. Известно, что из-за постоянного контакта с пересеченной местностью она склонна к быстрому износу. Поэтому для ее создания была использована брезентовая ткань. Сложная конфигурация стыков ограждения потребовала расхода такой ткани в количестве 14 метров. Его износостойкость можно увеличить за счет пропитки резиновым клеем с добавлением алюминиевой пудры. Такое покрытие имеет огромное практическое значение. В случае износа или разрывов гибкого ограждения его можно без труда восстановить. По аналогии с наращиванием автомобильного протектора. По словам автора проекта, перед тем как приступить к изготовлению ограждения, следует запастись максимальным терпением.

Установка готового ограждения, как и сборка самого корпуса, должны выполняться при условии нахождения будущего катера вверх килем. После раскантовки корпуса можно устанавливать силовую установку. Для этой операции понадобится шахта размерами 800 на 800. После того как система управления будет подведена к двигателю, наступает наиболее волнительный во всем процессе момент — испытание катера в реальных условиях.

Доброго всем времени суток. Хочу Вам представить на суд свою модель СВП сделанную за месяц. Сразу извинюсь, в введении не совсем то фото, но тоже относящееся к этой статье. Интрига...

Отступление

Доброго всем времени суток. Хочу начать с того, как я увлекся радио моделированием. Чуть больше года назад, на пятилетие ребенку подарил катер на воздушной подушке

Все было ничего, заряжали, катались до определенного момента. Пока сын, уединившись в своей комнате с игрушкой, решил засунуть антенну от пульта в пропеллер и включить его. Пропеллер разлетелся на мелкие кусочки, наказывать не стал, так как ребенок сам был в расстройстве, все игрушка испорчена.

Зная, что у нас в городе есть магазин «Мир Хобби» я поехал туда, а куда еще! Нужного (старый был 100мм) пропеллера у них не было, а самый маленький, который был это 6’x 4’ в количестве двух штук, прямого и обратного вращения. Делать нечего взял, что есть. Обрезав их под нужный размер, установил на игрушку, но тяга была уже не та. А еще через неделю у нас проводились судомодельные соревнования на которых мы с сыном тоже присутствовали в качестве зрителей. И все, вот и загорелась та искорка и тяга к моделированию и полетам. После чего я познакомился с данным сайтом заказал детали для первого самолета. Правда, до этого допустил небольшую ошибку, купив пульт в магазине за 3500, а не ПФ в районе 900+доставка. В ожидании посылки из Китая, летал на симуляторе через аудио шнурок.

За год было построено четыре самолета:

  1. Бутербродный Mustang P-51D, размах-900мм. (разбит в первом полете, оборудование снято),
  2. Cessna 182 из потолочки и пенополистерола, размах-1020мм. (битый, перебитый, но живой, оборудование снято)
  3. Самолет "Дон-Кихот" из потолочки и пенополистерола, размах-1500мм. (три раза разбитый, два крыла переклеено, сейчас на нем летаю)
  4. Extra 300 из потолочки, размах-800мм (разбита, ждет ремонта)
  5. Построен

Так как меня всегда влекла вода, корабли, катера и все что с ними связано, решил построить СВП. Покопавшись в интернете, я нашёл сайт model-hovercraft.com и о постройке СВП Griffon 2000TD.

Процесс постройки:

Изначально корпус сделал из фанеры 4мм, все выпилил, склеил и после взвешивания отказался от идеи с фанерой (вес составил 2.600 кг.), а еще планировалось обклеить стеклотканью, плюс электроника.

Корпус было решено делать из пенополистерола (утеплитель, далее пеноплекс) обклеенного стеклотканью. Лист пеноплекса толщиной 20мм был распущен пена резкой на два по10мм.

Вырезан и склеен корпус, после чего обклеен стеклотканью (1м. кв., эпоксидки 750гр.)

Надстройки тоже были сделаны из пеноплекса распущенного по 5мм, перед покраской прошёл все поверхности и детали из пены эпоксидной смолой, после чего покрасил все акриловой аэрозольной краской. Правда, в нескольких местах чуть подъело пеноплекс, но не критично.

Материалом для гибкого ограждения (далее ЮБКА) сперва была выбрана прорезиненная ткань (клеёнка из аптеки). Но опят же из-за большого веса была замене на плотную водоотталкивающую ткань. По выкройкам была вырезана и сшита юбка для будущего СВП.

Юбка и корпус между собой были склеены клеем UHU Por. Поставил мотор с регулятором от "Патрульного" и провел испытания юбки, результат порадовал. Подъем корпуса СВП от пола составляет 70-80мм,

проверил способность хода на ковролине и на линолеуме, результатом остался доволен.

Ограждение-диффузор основного пропеллера сделал из пеноплекса оклеенного стеклотканью. Руль направления был сделан из линейки, бамбуковых шпажек склеенных Poxipol-ом.

Также использовались все подручные средства: линейки 50 см, бальза 2-4мм, бамбуковые шпажки, зубочистки, медная проволока 16кв, нитки скотч и т.п. Сделаны мелкие детали (петли люков, ручки, поручни, прожектор, якорь, ящик для якорного линя, контейнер спасательного плота на подставке, мачта, радар, поводки дворников с дворниками) для более детализирования модели.

Стойка для основного мотора также сделана из линейки и бальзы.

На судне были сделаны ходовые огни. В мачту были установлены белый светодиод и красный мигающий, так как желтый не нашел. По бокам рубки установлены красный и зеленый ходовые огни в специально сделанных для них корпусах.

Управление питанием освещения осуществляется через тумблер включаемым серво машинкой HXT900

Отдельно был собран и установлен блок реверса тягового двигателя, с использованием двух концевых выключателей и одной серво машинки HXT900

Очень много фотографий в первой части видео.

Ходовые испытания проводил в три этапа.

Первый этап, обкатка по квартире, но из-за немалых размеров судна (0.5 м.кв.) не очень, то и удобно кататься по комнатам. Особых вопросов не возникло, все прошло в штатном режиме.

Второй этап, ходовые испытания на суше. Погода ясная, температура +2...+4,ветер боковой поперек дороги 8-10м/с порывами до 12-14м/с, поверхность асфальтовая сухая. При развороте по ветру очень сильно заносит модель (не хватало полосы). Зато при развороте против ветра вполне все предсказуемо. Обладает хорошей прямолинейностью хода с небольшим тримированием руля влево. После 8 минут эксплуатации по асфальту следов износа на юбке не обнаружено. Но всё-таки не для асфальта он строился. Очень сильно пылит из-под себя.

Третий этап, самый интересный на мой взгляд. Испытания на воде. Погода: ясно, температура 0...+2,ветер 4-6м/с, водоём с небольшими зарослям травы. Для удобства ведения видеосъемки перекинул канал с ch1 на ch4. На старт, оторвавшись от воды, судно с легкостью пошло над водной гладью, немного волнуя пруд. Рулиться довольно уверенно, хотя, на мой взгляд, рули надо сделать пошире (использовалась ширина линейки 50см). Брызги воды даже до середины юбки не долетают. Несколько раз наезжал на траву, растущую из-под воды, препятствие преодолел без труда, хотя на суше в траве завяз.

Четвертый этап, снег и лед. Осталось только дождаться снега и льда, чтобы завершить данный этап с полна. Думаю, по снегу можно будет достичь максимальной скорости на данной модели.

Компоненты, используемые в модели:

  1. (Mode2 - газ СЛЕВА, 9 каналов, версия 2). В/ч модуль и приёмник (8 каналов) - 1комплект
  2. Turnigy L2205-1350 (нагнетательный мотор) -1шт.
  3. для бесколлекторных двигателей Turnigy AE-25A (для нагнетательного мотора) -1шт.
  4. TURNIGY XP D2826-10 1400kv (маршевый двигатель)-1шт
  5. TURNIGY Plush 30А (для маршевого двигателя) -1шт.
  6. Поли композитный 7x4 / 178 x 102 мм -2шт.
  7. Flightmax 1500mAh 3S1P 20C -2 шт.
  8. Бортовой

    Высота по мачте min: 320мм.

    Высота по мачте мах: 400мм.

    Высота от поверхности до днища: 70-80мм

    Полное водоизмещение: 2450гр. (с аккумулятором 1500 mAh 3 S 1 P 20 C -2шт.).

    Запас хода: 7-8мин. (с аккумулятором 1500 mAh 3S1 P 20 C, на маршевом двигателе просел раньше, чем на нагнетательном).

    Видео отчет о постройке и испытаниях:

    Часть первая - этапы постройки.

    Часть вторая - испытания

    Часть третья - ходовые испытания

    Еще несколько фотографий:




    Вывод

    Модель СВП получилась, легкой в управлении, с неплохим запасом мощности, боится бокового сильного ветра, но справиться можно (требует активного руления), идеальной средой для модели считаю водоём и заснеженные просторы. Не хватает емкости аккумулятора (3S 1500mA/h).

    Отвечу на все интересующие вопросы по данной модели.

    Спасибо за внимание!