Эжекторные установки вентиляция. Усовершенствование вентиляции жилых зданий


Центробежные вентиляторы для автранспортных предприятий бывают низ­кого (до 1 кПа), среднего (1 ...3 кПа) и высоко­го (3...12 кПа) давления. В вентиляции принудительного типа применяются вентиляторы разного давления. Вентиля­тор центробежного типа содержит корпус спиральной формы, внутри которого вращается лопасти колеса, захватывающие воздух в про­странстве между лопатками. Под действием центробежных сил вращающийся воздух прижимается к стенкам кожуха (корпуса), собирается внутри корпуса и выбрасывается через выпускное отверстие. При этом в центре колеса образуется разрежение, куда устремляется наружный воз­дух; КПД центробежных вентиляторов составляет 0,7...0,8.

Особенности.

Пропеллер представляет собой трубу с плавно поджатым кон­цом - соплом. Эту трубу вводят в отсасывающий воздуховод. Принцип действия установки следующий. Струя воз­духа, выходящая из сопла с большой скоростью, создает разреже­ние в воздуховоде (трубе), которое усиливает отсос воздуха из производственного помещения. Внутрь сопла воздух подается по трубе компрессора. К достоин­ствам следует отнести его пожаробезопасность вследствие отсутствия вращающихся частей и электродви­гателей, которые могут давать искрение при попадании на враща­ющиеся части металлических деталей или в результате неплотно­го электрического контакта. Недостатком является низкий КПД изделия - 0,12...0,25.и высокие тарифы для перевозки к месту монтажа.

На предприятиях автомобильного транспорта работающие дви­гатели вводимых в помещение автомобилей, выделяющиеся в процессе ремонтных работ пыль, газы и пары загрязняют атмо­сферу помещений. Поэтому на площадях для стоянки, тех. обслуживания и ремонта автомобилей марки ЗИЛ, а также на произ­водственных участках и в подсобных помещениях организуется общеобменная вентиляция.

В дополнение к общеобменной предусматривают местную при­точную и вытяжную системы вентиляции. Местными отсосами снабжаются посты регулировки двигателей в зоне технического обслуживания и ремонта бортовых длинномеров . Стенды их испытания и обкатки, прибо­ры для проверки и ванны для промывки топливной аппаратуры. Стеллажи для зарядки аккумуляторных батарей, ванны для слива и приготовления электролита, печь для разогрева мастики для ак­кумуляторных батарей и т. п. Помещения для регенерации масел, зарядки аккумуляторов, пульверизационной окраски и хранения легковоспламеняющихся материалов должны иметь отдельные системы вытяжной вентиляции.

Искусственная (механическая) вентиляция. Кондиционирование воздуха. Аварийная вентиляция. Назначение и устройство эжектора.

Читайте также:
  1. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  2. I. Государственный стандарт общего образования и его назначение
  3. Автоматические идентификационные системы (АИС). Назначение, использование информации АИС
  4. Административно-политическое устройство в Крымском ханстве 1 страница
  5. Административно-политическое устройство в Крымском ханстве.
  6. Административно-территориальное устройство субъектов России.
  7. Административно-территориальное устройство субъектов РФ.

В соответствии со СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»

Вентиляция – обмен воздуха в помещениях для удаления избытков теплоты, влаги, вредных и других веществ с целью обеспечения допустимых метеорологических условий и чистоты воздуха в обслуживаемой или рабочей зоне при средней необеспеченности 400ч/г-при круглосуточной работе и 300 ч/г- при односменной работе в дневное время. При искусственной вентиляции воздух перемещается с помощью механических устройств (вентиляторов, эжекторов при агрессивной среде и др.).

При механической вентиляции воздухообмен осуществляется за счет напора воздуха, создаваемого вентиляторами (осевыми и центробежными); воздух в зимнее время подогревается, в летнее - охлаждается, очищается от загрязнений (пыли и вредных паров и газов).

Механическая вентиляция по сравнению с естественной имеет ряд преимуществ: большой радиус действия вследствие значительного давления, создаваемого вентилятором; возможность изменять или сохранять необходимый воздухообмен независимо от температуры наружного воздуха и скорости ветра; вводимый в помещение воздух подвергается предварительной очистке, осушке или увлажнению, подогреву или охлаждению; организовывается оптимальное воздухораспределение с подачей воздуха непосредственно к рабочим местам; улавливаются вредные выделения непосредственно в местах их образования и предотвращается их распространение по всему объему помещения, а также возможность очищать загрязненный воздух перед выбросом его в атмосферу.

К недостаткам механической вентиляции следует отнести значительную стоимость сооружения и его эксплуатации, необходимость проведения мероприятий по борьбе с шумом.

В зависимости от назначения вентиляция бывает приточная (для подачи воздуха), вытяжная (для удаления воздуха) или приточно-вытяжная (одновременно для подачи и удаления воздуха) и системы с рециркуляцией, а по месту действия - общеобменная, местная и комбинированная. Также системы механической вентиляции бывают смешанные, аварийные и системы кондиционирования.

Приточная система – производится забор воздуха извне через вентилятор, воздух нагревается и при необходимости увлажняется, а затем подается в помещение. Количество подаваемого воздуха регулируется клапанами и заслонками, устанавливаемых в ответвлениях.В помещении при этом создается избыточное давление, за счет которого загрязненный воздух вытесняется через двери, окна, фонари или щели строительных конструкций. Приточную систему применяют для вентиляции помещений, в которые нежелательно попадание загрязненного воздуха из соседних помещений или холодного воздуха извне.



Вытяжная вентиляция удаляет загрязненный воздух из всего объема помещения. Перегретый и загрязненный воздух удаляется из помещения через сеть воздуховодов с помощью вентилятора. Чистый воздух подсасывается через двери, окна, фонари или щели строительных конструкций. При этом в помещении создается пониженное давление, и чистый воздух для замещения удаленного подсасывается извне через двери, окна, щели строительных конструкций. Вытяжную систему целесообразно применять в том случае, когда загрязненный воздух данного помещения не должен попадать в соседние.

Приточно-вытяжная общеобменная система имеет две отдельные системы: через одну подается чистый воздух, через другую удаляется загрязненный.

При общеобменной вентиляции смена воздуха происходит во всем объеме помещения. Общеобменная вентиляции справляется только с тепловыделениями, когда нет примесей вредностей. Если при производстве выделяются газы, пары и пыль применяют смешанную вентиляцию – общеобменная плюс местные отсосы.



Местная вентиляция может быть приточной или вытяжной. Вытяжную вентиляцию устанавливают тогда, когда необходимо улавливать загрязнения непосредственно с мест возникновения; воздух забирается через воздухоприемники, которые могут быть выполнены в виде: вытяжного шкафа, вытяжного зонта, бортовых отсосов, которык устраиваются непосредственно у мест выделения вредностей. Местная приточная вентиляция подает чистый воздух на рабочее место, создавая благоприятную метеорологическую установку (воздушные души, завесы, оазисы).

Кондиционирование – процесс создания и автоматического поддержания оптимальных параметров воздушной среды в производственных помещениях. Для обеспечения кондиционирования используются специальные установки – кондиционеры (местные и центральные). Кондиционер с заданными условиями нагревает или увлажняет подаваемый воздух, осушает или охлаждают его, если нужно озонирует.

Аварийную вентиляцию для помещений, в которых возможно внезапное поступление большого количества вредных или горючих газов, паров или аэрозолей, следует предусматривать в соответствии с требованиями технологической части проекта, учитывая несовместимость по времени аварии технологического и вентиляционного оборудования.

Для аварийной вентиляции следует использовать:

а) основные системы общеобменной вентиляции с резервными вентиляторами, а также системы местных отсосов с резервными вентиляторами, обеспечивающие расход воздуха, необходимый для аварийной вентиляции;

б) системы, указанные в подпункте «а», и дополнительно системы аварийной вентиляции на недостающий расход воздуха;

в) только системы аварийной вентиляции, если использование основных систем невозможно или нецелесообразно.

Эжектор – это устройство для отсасывания (при значительном разрежении) жидкостей, газов за счет передачи кинетической энергии от рабочей среды (что двигается) к всасывающей. Если температура, категория и группа взрывоопасной смеси горючих газов, паров, аэрозолей, пыли с воздухом не соответствуют техническим условиям на взрывозащищенные вентиляторы, то следует предусматривать эжекторные установки. В системах с эжекторными установками следует предусматривать вентиляторы, воздуходувки или компрессоры в обычном исполнении, если они работают на наружном воздухе.

Действие эжектора основывается на разрежении, которое создается в нем струей другой жидкости или газа, который быстро двигается. Эжектор состоит из рабочего сопла (насадки), приемной камеры, камеры смешивания и диффузора.

Поток рабочей среды поступает из сопла в приемную камеру эжектора с большой скоростью, за счет вакуума, который образуется, захватывает за собой среду низкого давления. В камере смешивания происходит выравнивание скоростей (давлению) потоков сред. Затем смешанный поток следует в диффузор, где происходит превращение его кинетической энергии в потенциальную энергию и скоростного напора в статический, под действием которого осуществляется последующее перемещение смеси.

Эжекторное оборудование можно условно разделить на три вида в зависимости от агрегатного состояния взаимодействующих сред: газовые эжекторы, жидкостные эжекторы

и эжекторы многоцелевого назначения.

Описание:

Естественно-механические системы вентиляции эжекторного типа являются универсальным решением для жилых зданий, обеспечивая требуемый воздухообмен в квартирах вне зависимости от погодных условий в любое время года. В публикуемой статье приводятся данные по расчету и конструированию эжекторных установок для таких систем.

Опыт проектирования естественно-механической вентиляции в жилых зданиях с теплыми чердаками

Расчет эжекторных вытяжных вентиляционных установок низкого давления с дефлекторами

За основу методики расчета эжекторных установок приняты формулы для эжекторных систем аварийной вентиляции, приведенные в справочнике С. А. Рысина . Согласно табл. 1 для зданий выше 12 этажей следует применять установки с двумя дефлекторами и одним вентилятором на 1 секцию.

На рис. 2 приведена схема вентиляции с двумя дефлекторами. Показанные на рисунке глушители перед осевым вентилятором могут быть отменены при хорошей шумовой характеристике вентилятора. В качестве выпрямителя потока после вентилятора целесообразно устанавливать круглые шумоглушители с центральной пластиной длиной 1 000 мм (поставка «Венткомплект-Н»).

Следует отметить на рис. 1 три размера L 1 , L 2 и L 3 , которые следует соблюдать, а именно:

– длина L 1 принимается не менее 1,0 м для исключения обратных потоков воздуха;

– длина L 2 определяется расчетом и должна быть не менее начального участка струи первичного воздуха до полного ее распада перед срезом нижнего диска дефлектора.

Длина (L 2) участка смешения двух потоков воздуха в стволе дефлектора (D 3) определена по формуле для стесненной транзитной струи :

L 2 = 1,785 х D 3 – 1,9 x D 2(СОПЛА) .

Полученные значения L 2 равны 0,8–1,0–1,1–1,2 м для соответствующих диаметров дефлекторов: Ø630–800–900–1 000.

Конструктивная высота шахт-дефлекторов превышает указанные расстояния. Важным параметром, как представляется, может быть относительный диаметр D (L2) смешанной струи на расстоянии L 2 от среза сопла перед выходом из дефлектора. Эти величины определены также по формуле в книге В. Ф. Дроздова , для стесненной транзитной струи: D (L2) = D 2(СОПЛА) х (1 + 7,52 x a x L2 / D 2(СОПЛА)), м, где а – опытный коэффициент турбулентности, равный 0,08.

Полученные значения D (L2) равны 0,64–0,82–0,93–1,0 м, т. е. соответствуют диаметрам ствола дефлекторов 630–800–900–1 000 мм, и, вероятно, это будет способствовать уменьшению потерь на выходе в атмосферу.

В 22-этажной секции (в доме К-4 на Мичуринском проспекте) в марте 2008 года были выполнены замеры расходов и скоростей воздуха в венткамере с целью сравнения их с проектными параметрами.

С учетом полученных результатов можно сделать выводы о том, что:

1. При наружной температуре 5 °С и температуре на чердаке 13 °С система работала удовлетворительно в естественном режиме. На рис. 3 указаны результаты замеров и проектные величины, которые практически совпадают (проектный расход на секцию L 3 = 11 000 м 3 /ч, по 500 м 3 /ч на этаж). Выявилась допустимость скоростей в стволе дефлектора V 3 = 2,7 м/с и в кольцевом сечении ствола V 2 = 3,2 м/с. Определилась часть естественной вытяжки через неработающий осевой вентилятор ~15 % от расчетной. Подтвердилась работоспособность системы в естественном режиме при расчетной t НАР = 5 °С.

2. Замеры при включенном вентиляторе показаны на рис. 4:

– производительность вентилятора (13 300 м 3 /ч) превысила принятую по характеристике в 2 раза, и на 20 % увеличился расчетный расход на секцию. Можно предположить, что осевой вентилятор работал совместно с гравитационным напором, который для секции высотой 82 м до дефлектора равен около 50 Па. Следует иметь в виду эти результаты и предусматривать регуляторы скорости вентиляторов для приведения его характеристики в заданный режим;

– большие скорости на выходе из сопла (26,4 м/с) не способствовали повышению коэффициента эжекции, а наоборот, он был b = 0,28 вместо проектного b = 0,80, вероятно, из-за большой скорости на выходе из дефлектора и торможения эжекции в стволе шахты;

– однако выявилась еще одна разновидность «гибридной вентиляции» при подаче полного объема вытяжки, но с повышенным расходом электроэнергии.

3. На рис. 5 показаны результаты замеров, которые были получены путем искусственного дросселирования входного конфузора вентилятора до 35 % его открытого сечения и при этом:

– производительность вентилятора была снижена до проектной, и все другие величины также приблизились к заданным, в том числе основной показатель – коэффициент эжекции b = 0,77–0,8.

Полученные результаты замеров подтвердили основное:

– предположение о возможности использования расчетных формул, которые приняты применительно к системам аварийной вентиляции эжекторного типа;

– возможность принятой конструкции вытяжного устройства удовлетворительно работать в двух режимах – естественном и механическом.

4. Было сделано 2 замера на вытяжных диффузорах вентблоков кухонь 22-го и 1-го этажей при открытых сечениях Ø120 мм и получены расходы воздуха:

– на 22-м этаже L = 83 м 3 /ч при V = 2,14 м/с;

– на 1-м этаже:

а) L = 50 м 3 /ч, V = 1,28 м/с при закрытых окнах и входной двери;

б) L = 94 м 3 /ч, V = 2,37 м/с при открытой двери в коридор.

При установке диффузоров (типа ДПУ-М125) на место объемы вытяжки должны будут равны ≈ 60 м 3 /ч при D Р = 3,0–4,0 Па.

Выводы

1. Предложенная естественно-механическая система вытяжной вентиляции эжекторного типа является универсальным решением для жилых зданий массового строительства, а также позволяет просто выполнить реконструкцию большого количества существующих зданий с теплыми чердаками.

2. Приведенные в настоящей статье данные по расчету и конструированию эжекторных установок проверены натурными замерами и являются достаточными для проектирования таких систем вентиляции в зданиях с теплыми чердаками.

3. Данные системы вентиляции малозатратны и экономичны в эксплуатации по расходу электроэнергии.

В разработке проектов жилых зданий с естественно-механической вентиляцией участвовали инженеры Мастерской № 11, ГУП «Моспроект-2 им. М. В. Посохина»: А. Е. Савенков, главный специалист; Н. Г. Денисова, начальник группы; А. В. Медунов, ведущий инженер.

Использование: в горной промышленности при проветривании подземных выработок. Сущность изобретения: вентиляторная установка включает размещенный в эжекторном канале горной выработки вентилятор. Установка снабжена установленной вдоль продольной оси горной выработки обечайкой, размещенной между стенками обечайки и стенками горной выработки перемычкой и дополнительным вентилятором. Основной вентилятор установлен на противоположном конце обечайки. Оба вентилятора установлены с зазором по отношению к стенкам обечайки выходными каналами навстречу друг другу с возможностью перемещения вдоль продольной оси обечайки. 1 ил.

Изобретение относится к вентиляторостроению и предназначено для обеспечения проветривания системы горных выработок и систем вентиляционных сооружений. Известна вентиляторная установка, работающая на трубопровод, например, шахтную вентиляционную сеть (Ушаков К.З. Бурчаков А.М. Пучков Л.А. Медведев И. И. Аэрология горных предприятий, М. Недра, 1987). К таким вентиляторным установкам относят вентиляторы, работающие через перемычку. Недостатком известной вентиляторной установки является неполное использование мощности приводного двигателя с целью существенного (в 2 3 раза) увеличения расхода воздуха по сравнению с паспортной производительностью вентиляторной установки, при работе последней не трубопровод. Более близким аналогом к заявленному изобретению является вентиляторная установка, состоящая из вентилятора-эжектора, установленного в горной выработке (Медведев И.И. Проветривание калийных рудников, М. Недра, 1970, с. 124 139), которая позволяет увеличить в несколько раз расход воздуха по сравнению с паспортной производительностью. Недостатком известного технического решения является возможность работы эжектора, расположенного в горной выработке большого сечения в режиме "сам на себя", т.е. с замкнутым движением воздушных потоков в районе вентиляторной установки циркулирующих потоков, а также трудность в подборе выработки нужной конфигурации и в нужном месте для достижения максимального эжектирующего эффекта и в расширении рабочей зоны вентиляторной эжектирующей установки. Цель изобретения расширение рабочей зоны (области промышленного использования) вентиляторной эжектирующей установки. Поставленная цель достигается путем расположения двух одинаковых вентиляторов эжекторов у входных сечений и обечайку встречно друг другу с возможностью перемещения из вентиляторов вдоль оси (ближе-дальше к обечайке) и перекрытия остальной части сечения горной выработки перемычкой. Размеры поперечного сечения обечайки определяют исходя из оптимального отношения площади поперечного сечения в зоне полного перемещения первичного потока, проходящего через вентилятор и вторичного эжектируемого по сечению между вентилятором и обечайкой. За счет этого обеспечивается постоянный расход воздуха с максимальным коэффициентом эжекции (по отношению к паспортной производительности вентилятора). Раскрытие струи первичного потока (до зоны полного перемешивания первичного и вторичного потоков) должно происходить в обечайке, чем предотвращается движение воздушных потоков внутри обечайки навстречу основному потоку. Для снижения эжектирующего эффекта от максимального значения, вентилятор перемещают вдоль оси отодвигая его от обечайки или вдвигая его в обечайку, как показано на чертеже. Это целесообразно выполнять при необходимости снижения количества воздуха, подаваемого эжектирующей установкой превышающей возможности регулирования производительности лопатками направляющего аппарата вентилятора, т.е. происходит расширение рабочей зоны в сторону уменьшения производительностей. Особенно ценным является то, что даже для вентиляторов без средств регулирования производительности (направляющих аппаратов) возможно получение на единственной характеристики, а рабочей зоны, что расширяет возможности применения вентиляторной эжектирующей установки предлагаемого типа. Перемычка между обечайкой и стенками горной выработки предотвратит движение воздушных потоков в этом сечении. В работе находится один из вентиляторов-эжекторов и независимо от величины сечения горной выработки, в которой расположена вентиляторная установка, она будет иметь постоянный расход воздуха. В реверсивном режиме включается второй вентилятор-эжектор, расположенный с другой стороны обечайки, встречно первому. Производительность вентиляторной установки как в прямом, так и в реверсивном режиме будет одинаковой. На чертеже представлена вентиляторная установка, где 1 горная выработка; 2, 3 вентиляторы-эжекторы; 4 - обечайка; 5 перемычка; 6 поток воздуха при прямой работе вентиляторной установки; 7 эжектируемый поток при этом режиме работы установки; 8 поток воздуха при реверсивной работе вентиляторной установки; 9 эжектируемый поток при реверсивном режиме работы установки. Вентиляторная установка работает следующим образом. При включении вентилятора-эжектора 2 через него проходит поток воздуха, 6, а по сечению между внешней поверхностью вентилятора 2 и внутренней поверхностью обечайки 4 проходит поток эжектируемого воздуха 7. Поток 6 и 7 перемещается по длине обечайки и поступают в горную выработку 1. Такая схема позволяет увеличивать в несколько раз расход воздуха по сравнению с паспортной производительностью вентилятора. Между стенками выработки 1 и обечайкой 4 установлена перемычка 5, поэтому в данном сечении движение воздуха не происходит. Обечайка 4 подбирается таким образом, чтобы обеспечивался максимальной эжектирующий эффект воздуха. При необходимости снижения эжектирующего эффекта более возможностей регулирования, вентилятор 2(3) перемещают вдоль оси (ближе дальше к обечайке) показано пунктиром на чертеже. С другой стороны обечайки зеркально вентилятору-эжектору 2 устанавливают вентилятор-эжектор 3, который включается в работу в реверсивном режиме, а вентилятор-эжектор 2 в этом случае останавливается. В реверсивном режиме все происходит как при работе вентилятора эжектора 2. Только в обратную сторону, а именно через вентилятор-эжектор 3 проходит поток воздуха, а по сечению между внешней поверхностью вентилятора-эжектора 3 и внутренней поверхностью обечайки 4 проходит поток эжектируемого воздуха 9. Потоки 8 и 9 перемешиваются по длине обечайки и поступают в горную выработку 1, обеспечивая обратное движение воздуха по системе горных выработок, т.е. реверсию воздушной струи (регулирование аналогично прямой работы). Такая вентиляторная установка может располагаться в любой горной выработке, где возможно размещение обечайки, обеспечивая работу в любой точке расширенной рабочей зоны как в прямом, так и в реверсивном режиме работы. На руднике Первого Березниковского производственного калийного рудоуправления АО "Уралкалий" ведутся опытные работы по испытанию предлагаемой вентиляторной установки.

Формула изобретения

Вентиляторная эжекторная установка, включающая вентилятор, размещенный в эжекторном канале горной выработки, отличающаяся тем, что она снабжена установленной вдоль продольной оси горной выработки обечайкой, размещенной между стенками обечайки и стенками горной выработки перемычкой и дополнительным вентилятором, при этом основной вентилятор установлен на противоположном конце обечайки, оба вентилятора установлены с зазором по отношению к стенкам обечайки выходными каналами навстречу друг другу с возможностью перемещения вдоль продольной оси обечайки.

Для покрасочной камеры очень важным является микроклимат внутри бокса. Чтобы специалисту можно было комфортно работать, а краска без проблем ложилась на поверхность, требуется установить такую систему, которая сможет удалять отработанные потоки воздуха из помещения и направлять их в выходные каналы. Суть работы эжектора заключается в том, что чистый воздух, подаваемый вентиляционную камеру, перемешивается с взрывоопасными парами и вредными примесями. В результате смена отработанного воздуха выполняется намного быстрее.

Устройство эжекторов

Чтобы понимать устройство эжекторов, следует разобраться в том, как происходит удаление уже отработанного воздуха в покрасочном боксе. Для максимально эффективного удаления отработанного потока воздуха, используются эжекторные установки. Конструкция изготовляется из листовой стали, толщина материала составляет 1,2 мм. Монтаж выполняется при помощи сварки, хотя использоваться могут и разъемные устройства.

Что касается отдельных элементов, то выделить можно следующее:

  1. Есть сопло, которое предназначено для преобразование потенциальной энергии потока в кинетическую. На практике это нужно для создания высокоскоростной струи.
  2. Пассивный воздушный поток засасывается за счет создания вакуума. Отработанный воздух попадает в приемную камеру.
  3. Рабочая камера эжектора нужно для смешения активного и пассивного потока, где присутствуют вредные примеси и опасные для человека газы. В результате энергообмена получается один поток с одинаковым по силе напором.
  4. Поток попадает в диффузор, где происходит одновременное снижение скорости и увеличение давления.

Принцип работы

Зависит от многих составляющих - от герметичности камеры в целом, от фильтров, за чистотой которых нужно следить, от вентиляторов. Но все перечисленные элементы будут бесполезными, если эжектор не будет работать так, как это нужно. Все держится на потоке рабочей среды, который поступает в приемную камеру с большой скоростью. Благодаря такой высокой скорости потока, создается вакуум, затягивающий отработанный воздух.

Дальнейшее действие механизма было описано при разборе составных частей эжектора. В камере смешивания сталкиваются два потока, один из которых содержит вредные примеси. После этого поток попадает в диффузор и уходит по вытяжным каналам.

Особенности установки

Основная проблема при установке системы вентиляции, и эжекторов в частности, не в самом процессе монтажа, а в грамотных расчетах. Покрасочную камеру нужно грамотно проектировать, чтобы установленная система вентиляции справлялась с поставленной нагрузкой. Признаком правильной проектировки является превышение объемов поступающего чистого воздуха в сравнении с потоками, уходящими через вытяжные отверстия.

В процессе проектирование нужно понять, каким будет воздушный обмен. На этот показатель влияет и размеры покрасочного бокса, и количество одновременно работающего персонала. По итогу специалист выведет значение кратности обмена, то есть, количество полной смены объемов воздуха за определенное время. При выполнении покраски больших изделий, как того же автомобиля, нужно придерживаться показателя кратности в сто раз.

Также потребуется грамотно провести выполнение расчетов сечений воздуховодов. Учитывая необходимость работы с воздушными потоками, имеющими взрывоопасные примеси, нужно устанавливать воздуховоды из жароустойчивых материалов.

Специфика обслуживания

Обслуживание эжекторов выполняется в комплексе, вместе с обслуживанием всей системы вентиляции в целом. Под обслуживанием принято понимать регулярный осмотр фильтров, которые забиваются частицами пыли и остатками краски. Чистка фильтров выполняется каждые 250 часов работы, но только один раз. По истечение 500 рабочих часов фильтр заменяется на новый.

Что касается эжекторов, то они тоже подлежать очистке. Наиболее подвержен загрязнению именно диффузор. Для его очистки принято использовать небольшой пластиковый стержень. При обслуживании эжектора нельзя использовать предметы с острыми кромками. Они могут повредить поверхность диффузора, нарушив его герметичность.

Про необходимость выбора качественной эжекторной установки нужно знать, что от ее работы полностью зависит и качество окраски поверхностей. Недостатки системы отразятся на качестве выполняемых работ. Если нет возможности самостоятельно проконтролировать качество элементов и правильность их установки, то следует обратиться за услугами в сертифицированные компании, которые специализируются в этой сфере - таким образом можно получить гарантию того, что все работы будут произведены правильно.