Perimeter of the lateral surface of the prism. Straight prism – Knowledge Hypermarket


The base of the prism can be any polygon - triangle, quadrangle, etc. Both bases are absolutely identical, and accordingly, with which the corners of parallel edges are connected to each other, are always parallel. At the base of a regular prism lies a regular polygon, that is, one in which all sides are equal. In a straight prism, the ribs between the side faces are perpendicular to the base. In this case, the base of a straight prism can contain a polygon with any number of angles. A prism whose base is a parallelogram is called a parallelepiped. A rectangle is a special case of a parallelogram. If this figure lies at the base, and the side faces are located at right angles to the base, the parallelepiped is called rectangular. The second name for this geometric body is rectangular.

What does she look like

Rectangular prisms surrounded modern man quite a few. This is, for example, ordinary cardboard for shoes, computer components, etc. Look around. Even in a room you will probably see many rectangular prisms. This includes a computer case, a bookcase, a refrigerator, a wardrobe, and many other items. The shape is extremely popular mainly because it allows you to make the most of your space, whether you're decorating your interior or packing things into cardboard before moving.

Properties of a rectangular prism

A rectangular prism has a number of specific properties. Any pair of faces can serve as it, since all adjacent faces are located at the same angle to each other, and this angle is 90°. The volume and surface area of ​​a rectangular prism are easier to calculate than any other. Take any object that has the shape of a rectangular prism. Measure its length, width and height. To find the volume, just multiply these measurements. That is, the formula looks like this: V=a*b*h, where V is the volume, a and b are the sides of the base, h is the height that coincides with the side edge of this geometric body. The base area is calculated using the formula S1=a*b. For the side surface, you must first calculate the perimeter of the base using the formula P=2(a+b), and then multiply it by the height. The resulting formula is S2=P*h=2(a+b)*h. To calculate the total surface area of ​​a rectangular prism, add twice the base area and the side surface area. The resulting formula is S=2S1+S2=2*a*b+2*(a+b)*h=2

Different prisms are different from each other. At the same time, they have a lot in common. To find the area of ​​the base of the prism, you will need to understand what type it has.

General theory

A prism is any polyhedron whose sides have the shape of a parallelogram. Moreover, its base can be any polyhedron - from a triangle to an n-gon. Moreover, the bases of the prism are always equal to each other. What does not apply to the side faces is that they can vary significantly in size.

When solving problems, not only the area of ​​the base of the prism is encountered. It may require knowledge of the lateral surface, that is, all the faces that are not bases. The complete surface will be the union of all the faces that make up the prism.

Sometimes problems involve height. It is perpendicular to the bases. The diagonal of a polyhedron is a segment that connects in pairs any two vertices that do not belong to the same face.

It should be noted that the base area of ​​a straight or inclined prism does not depend on the angle between them and the side faces. If they have the same figures on the top and bottom faces, then their areas will be equal.

Triangular prism

It has at its base a figure with three vertices, that is, a triangle. As you know, it can be different. If so, it is enough to remember that its area is determined by half the product of the legs.

The mathematical notation looks like this: S = ½ av.

To find out the area of ​​the base in general view, the formulas will be useful: Heron and the one in which half of the side is taken to the height drawn to it.

The first formula should be written as follows: S = √(р (р-а) (р-в) (р-с)). This notation contains a semi-perimeter (p), that is, the sum of three sides divided by two.

Second: S = ½ n a * a.

If you want to find out the area of ​​the base of a triangular prism, which is regular, then the triangle turns out to be equilateral. There is a formula for it: S = ¼ a 2 * √3.

Quadrangular prism

Its base is any of the known quadrangles. It can be a rectangle or square, parallelepiped or rhombus. In each case, in order to calculate the area of ​​the base of the prism, you will need your own formula.

If the base is a rectangle, then its area is determined as follows: S = ab, where a, b are the sides of the rectangle.

When we're talking about about a quadrangular prism, then the area of ​​the base of a regular prism is calculated using the formula for a square. Because it is he who lies at the foundation. S = a 2.

In the case when the base is a parallelepiped, the following equality will be needed: S = a * n a. It happens that the side of a parallelepiped and one of the angles are given. Then, to calculate the height, you will need to use an additional formula: n a = b * sin A. Moreover, angle A is adjacent to side “b”, and height n is opposite to this angle.

If there is a rhombus at the base of the prism, then to determine its area you will need the same formula as for a parallelogram (since it is a special case of it). But you can also use this: S = ½ d 1 d 2. Here d 1 and d 2 are two diagonals of the rhombus.

Regular pentagonal prism

This case involves dividing the polygon into triangles, the areas of which are easier to find out. Although it happens that figures can have a different number of vertices.

Since the base of the prism is a regular pentagon, it can be divided into five equilateral triangles. Then the area of ​​the base of the prism is equal to the area of ​​one such triangle (the formula can be seen above), multiplied by five.

Regular hexagonal prism

Using the principle described for a pentagonal prism, it is possible to divide the hexagon of the base into 6 equilateral triangles. The formula for the base area of ​​such a prism is similar to the previous one. Only it should be multiplied by six.

The formula will look like this: S = 3/2 a 2 * √3.

Tasks

No. 1. Given a regular straight line, its diagonal is 22 cm, the height of the polyhedron is 14 cm. Calculate the area of ​​the base of the prism and the entire surface.

Solution. The base of the prism is a square, but its side is unknown. You can find its value from the diagonal of the square (x), which is related to the diagonal of the prism (d) and its height (h). x 2 = d 2 - n 2. On the other hand, this segment “x” is the hypotenuse in a triangle whose legs are equal to the side of the square. That is, x 2 = a 2 + a 2. Thus it turns out that a 2 = (d 2 - n 2)/2.

Substitute the number 22 instead of d, and replace “n” with its value - 14, it turns out that the side of the square is 12 cm. Now just find out the area of ​​the base: 12 * 12 = 144 cm 2.

To find out the area of ​​the entire surface, you need to add twice the base area and quadruple the side area. The latter can be easily found using the formula for a rectangle: multiply the height of the polyhedron and the side of the base. That is, 14 and 12, this number will be equal to 168 cm 2. Total area The surface of the prism turns out to be 960 cm 2.

Answer. The area of ​​the base of the prism is 144 cm 2. The entire surface is 960 cm 2.

No. 2. Given At the base there is a triangle with a side of 6 cm. In this case, the diagonal of the side face is 10 cm. Calculate the areas: the base and the side surface.

Solution. Since the prism is regular, its base is an equilateral triangle. Therefore, its area turns out to be equal to 6 squared, multiplied by ¼ and by the square root of 3. A simple calculation leads to the result: 9√3 cm 2. This is the area of ​​one base of the prism.

All side faces are the same and are rectangles with sides of 6 and 10 cm. To calculate their areas, just multiply these numbers. Then multiply them by three, because the prism has exactly that many side faces. Then the area of ​​the lateral surface of the wound turns out to be 180 cm 2.

Answer. Areas: base - 9√3 cm 2, lateral surface of the prism - 180 cm 2.

In the school curriculum for a stereometry course, the study of three-dimensional figures usually begins with a simple geometric body - the polyhedron of a prism. The role of its bases is performed by 2 equal polygons lying in parallel planes. A special case is a regular quadrangular prism. Its bases are 2 identical regular quadrangles, to which the sides are perpendicular, having the shape of parallelograms (or rectangles, if the prism is not inclined).

What does a prism look like?

A regular quadrangular prism is a hexagon, the bases of which are 2 squares, and the side faces are represented by rectangles. Another name for this geometric figure- straight parallelepiped.

A drawing showing a quadrangular prism is shown below.

You can also see in the picture essential elements, of which the geometric body consists. These include:

Sometimes in geometry problems you can come across the concept of a section. The definition will sound like this: a section is all the points of a volumetric body belonging to a cutting plane. The section can be perpendicular (intersects the edges of the figure at an angle of 90 degrees). For a rectangular prism, a diagonal section is also considered (the maximum number of sections that can be constructed is 2), passing through 2 edges and the diagonals of the base.

If the section is drawn in such a way that the cutting plane is not parallel to either the bases or the side faces, the result is a truncated prism.

To find the given prismatic elements, various relations and formulas are used. Some of them are known from the planimetry course (for example, to find the area of ​​the base of a prism, it is enough to remember the formula for the area of ​​a square).

Surface area and volume

To determine the volume of a prism using the formula, you need to know the area of ​​its base and height:

V = Sbas h

Since the base of a regular tetrahedral prism is a square with side a, You can write the formula in more detailed form:

V = a²·h

If we are talking about a cube - a regular prism with equal length, width and height, the volume is calculated as follows:

To understand how to find the lateral surface area of ​​a prism, you need to imagine its development.

From the drawing it can be seen that the side surface is made up of 4 equal rectangles. Its area is calculated as the product of the perimeter of the base and the height of the figure:

Sside = Posn h

Taking into account that the perimeter of the square is equal to P = 4a, the formula takes the form:

Sside = 4a h

For cube:

Sside = 4a²

To calculate the total surface area of ​​the prism, you need to add 2 base areas to the lateral area:

Sfull = Sside + 2Smain

In relation to a quadrangular regular prism, the formula looks like:

Stotal = 4a h + 2a²

For the surface area of ​​a cube:

Sfull = 6a²

Knowing the volume or surface area, you can calculate individual elements geometric body.

Finding prism elements

Often there are problems in which the volume is given or the value of the lateral surface area is known, where it is necessary to determine the length of the side of the base or the height. In such cases, the formulas can be derived:

  • base side length: a = Sside / 4h = √(V / h);
  • height or side rib length: h = Sside / 4a = V / a²;
  • base area: Sbas = V / h;
  • side face area: Side gr = Sside / 4.

To determine how much area the diagonal section has, you need to know the length of the diagonal and the height of the figure. For a square d = a√2. From this it follows:

Sdiag = ah√2

To calculate the diagonal of a prism, use the formula:

dprize = √(2a² + h²)

To understand how to apply the given relationships, you can practice and solve several simple tasks.

Examples of problems with solutions

Here are some tasks found on state final exams in mathematics.

Task 1.

Sand is poured into a box shaped like a regular quadrangular prism. The height of its level is 10 cm. What will the sand level be if you move it into a container of the same shape, but with a base twice as long?

It should be reasoned as follows. The amount of sand in the first and second containers did not change, i.e. its volume in them is the same. You can denote the length of the base by a. In this case, for the first box the volume of the substance will be:

V₁ = ha² = 10a²

For the second box, the length of the base is 2a, but the height of the sand level is unknown:

V₂ = h (2a)² = 4ha²

Since V₁ = V₂, we can equate the expressions:

10a² = 4ha²

After reducing both sides of the equation by a², we get:

As a result, the new sand level will be h = 10 / 4 = 2.5 cm.

Task 2.

ABCDA₁B₁C₁D₁ is a correct prism. It is known that BD = AB₁ = 6√2. Find the total surface area of ​​the body.

To make it easier to understand which elements are known, you can draw a figure.

Since we are talking about a regular prism, we can conclude that at the base there is a square with a diagonal of 6√2. The diagonal of the side face has the same size, therefore, the side face also has the shape of a square equal to the base. It turns out that all three dimensions - length, width and height - are equal. We can conclude that ABCDA₁B₁C₁D₁ is a cube.

The length of any edge is determined through a known diagonal:

a = d / √2 = 6√2 / √2 = 6

The total surface area is found using the formula for a cube:

Sfull = 6a² = 6 6² = 216


Task 3.

The room is being renovated. It is known that its floor has the shape of a square with an area of ​​9 m². The height of the room is 2.5 m. What is the lowest cost of wallpapering a room if 1 m² costs 50 rubles?

Since the floor and ceiling are squares, i.e. regular quadrangles, and its walls are perpendicular horizontal surfaces, we can conclude that it is a correct prism. It is necessary to determine the area of ​​its lateral surface.

The length of the room is a = √9 = 3 m.

The area will be covered with wallpaper Sside = 4 3 2.5 = 30 m².

The lowest cost of wallpaper for this room will be 50·30 = 1500 rubles

Thus, to solve problems on rectangular prism It is enough to be able to calculate the area and perimeter of a square and rectangle, as well as know the formulas for finding volume and surface area.

How to find the area of ​​a cube















Definition. Prism is a polyhedron, all of whose vertices are located in two parallel planes, and in these same two planes lie two faces of the prism, which are equal polygons with correspondingly parallel sides, and all edges that do not lie in these planes are parallel.

Two equal faces are called prism bases(ABCDE, A 1 B 1 C 1 D 1 E 1).

All other faces of the prism are called side faces(AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

All side faces form lateral surface of the prism .

All lateral faces of the prism are parallelograms .

The edges that do not lie at the bases are called the lateral edges of the prism ( AA 1, BB 1, CC 1, DD 1, EE 1).

Prism diagonal is a segment whose ends are two vertices of a prism that do not lie on the same face (AD 1).

The length of the segment connecting the bases of the prism and perpendicular to both bases at the same time is called prism height .

Designation:ABCDE A 1 B 1 C 1 D 1 E 1. (First, in the order of traversal, the vertices of one base are indicated, and then, in the same order, the vertices of another; the ends of each side edge are designated by the same letters, only the vertices lying in one base are designated by letters without an index, and in the other - with an index)

The name of the prism is associated with the number of angles in the figure lying at its base, for example, in Figure 1 there is a pentagon at the base, so the prism is called pentagonal prism. But because such a prism has 7 faces, then it heptahedron(2 faces - the bases of the prism, 5 faces - parallelograms, - its side faces)

Among straight prisms, it stands out private view: correct prisms.

A straight prism is called correct, if its bases are regular polygons.

A regular prism has all lateral faces equal rectangles. A special case of a prism is a parallelepiped.

Parallelepiped

Parallelepiped is a quadrangular prism, at the base of which lies a parallelogram (an inclined parallelepiped). Right parallelepiped- a parallelepiped whose lateral edges are perpendicular to the planes of the base.

Rectangular parallelepiped- a right parallelepiped whose base is a rectangle.

Properties and theorems:


Some properties of a parallelepiped are similar to the known properties of a parallelogram. A rectangular parallelepiped having equal dimensions is called cube .All faces of a cube are equal squares. The square of the diagonal is equal to the sum of the squares of its three dimensions

,

where d is the diagonal of the square;
a is the side of the square.

An idea of ​​a prism is given by:

  • various architectural structures;
  • children's toys;
  • packaging boxes;
  • designer items, etc.





The area of ​​the total and lateral surface of the prism

Total surface area of ​​the prism is the sum of the areas of all its faces Lateral surface area is called the sum of the areas of its lateral faces. The bases of the prism are equal polygons, then their areas are equal. That's why

S full = S side + 2S main,

Where S full- total surface area, S side-lateral surface area, S base- base area

The lateral surface area of ​​a straight prism is equal to the product of the perimeter of the base and the height of the prism.

S side= P basic * h,

Where S side-area of ​​the lateral surface of a straight prism,

P main - perimeter of the base of a straight prism,

h is the height of the straight prism, equal to the side edge.

Prism volume

The volume of a prism is equal to the product of the area of ​​the base and the height.

A branch of mathematics that deals with the study of the properties of various figures (points, lines, angles, two-dimensional and three-dimensional objects), their sizes and relative position. For ease of teaching, geometry is divided into planimetry and stereometry. IN… … Collier's Encyclopedia

Geometry of spaces of dimensions greater than three; the term is applied to those spaces whose geometry was originally developed for the case of three dimensions and only then generalized to the number of dimensions n>3, primarily Euclidean space, ... ... Mathematical Encyclopedia

N-dimensional Euclidean geometry generalization of Euclidean geometry to space more measurements. Although physical space is three-dimensional, and human organs senses are designed to perceive three dimensions, N dimensional... ... Wikipedia

This term has other meanings, see Pyramidatsu (meanings). The reliability of this section of the article has been questioned. You must verify the accuracy of the facts stated in this section. There may be explanations on the talk page... Wikipedia

- (Constructive Solid Geometry, CSG) technology used in modeling solid bodies. Constructive block geometry is often, but not always, the way to model in three-dimensional graphics and CAD. It allows you to create a complex scene or... Wikipedia

Constructive Solid Geometry (CSG) is a technology used in the modeling of solids. Constructive block geometry is often, but not always, the way to model in 3D graphics and CAD. She... ... Wikipedia

This term has other meanings, see Volume (meanings). Volume is an additive function of a set (measure), characterizing the capacity of the area of ​​space that it occupies. Initially arose and was applied without strict... ... Wikipedia

Cube Type Regular polyhedron Face square Vertices Edges Faces ... Wikipedia

Volume is an additive function of a set (measure), characterizing the capacity of the area of ​​space that it occupies. Initially it arose and was applied without a strict definition in relation to three-dimensional bodies of three-dimensional Euclidean space.... ... Wikipedia

A portion of space bounded by a collection of a finite number of planar polygons (see GEOMETRY) connected in such a way that each side of any polygon is a side of exactly one other polygon (called... ... Collier's Encyclopedia

Books

  • Set of tables. Geometry. 10th grade. 14 tables + methodology, . The tables are printed on thick printed cardboard measuring 680 x 980 mm. The kit includes a brochure with methodological recommendations for the teacher. Educational album of 14 sheets.…