Особенности воздушного режима пром. здания


Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми его помещениями и наружным воздухом, включающий перемещение воздуха внутри помещений, движение воздуха через ограждения, проемы, каналы и воздуховоды и обтекание здания потоком воздуха. Традиционно при рассмотрении отдельных вопросов воздушного режима здания их объединяют в три задачи: внутреннюю, краевую и внешнюю.

Общая физико-математическая постановка задачи о воздушном режиме здания возможна лишь в самом обобщенном виде. Отдельные процессы весьма сложны. Описание их базируется на классических уравнениях переноса массы, энергии, импульса в турбулентном потоке.

С позиций специальности «Теплоснабжение и вентиляция» наиболее актуальны следующие явления: инфильтрация и эксфильтрация воздуха через наружные ограждения и проемы (неорганизованный естественный воздухообмен, увеличивающий теплопотери помещения и снижающий теплозащитные свойства наружных ограждений); аэрация (организованный естественный воздухообмен для вентиляции теплонапряженных помещений); перетекание воздуха между смежными помещениями (неорганизованное и организованное).

Естественными силами, вызывающими движение воздуха в здании, являются гравитационное и ветровое давления. Температура и плотность воздуха внутри и снаружи здания обычно неодинаковы, в результате чего гравитационное давление по сторонам ограждений оказывается разным. За счет действия ветра на наветренной стороне здания создается подпор, а на поверхностях ограждений возникает избыточное статическое давление. На заветренной стороне образуется разрежение и статическое давление оказывается пониженным. Таким образом, при ветре давление с внешней стороны здания отличается от давления внутри помещений.

Гравитационное и ветровое давления обычно действуют совместно. Воздухообмен под влиянием этих естественных сил трудно рассчитывать и прогнозировать. Его можно уменьшить, уплотняя ограждения, а также частично регулировать с помощью дросселирования каналов вентиляции, открыванием окон, фрамуr и вентиляционных фонарей.

Воздушный режим связан с тепловым режимом здания. Инфильтрация наружного воздуха приводит к дополнительным затратам тепла на его подогрев. Эксфильтрация влажного внутреннего воздуха увлажняет и снижает теплозащитные свойства ограждений.



Положение и размеры зоны инфильтрации и эксфильтрации в здании зависят от геометрии, конструктивных особенностей, режима вентилирования здания, а также от района строительства, времени года и параметров климата.

Между фильтрующимся воздухом и ограждением происходит теплообмен, интенсивность которого зависит от места фильтрации в конструкции ограждения (массив, стык панелей, окна, воздушные прослойки и т. д.). Таким образом, возникает необходимость в расчетах воздушного режима здания: определении интенсивности инфильтрации и эксфильтрации воздуха и решении задачи теплопередачи отдельных частей ограждения при наличии воздухопроницания.

Тепловой режим здания

Общая схема теплообмена в помещении

Тепловая обстановка в помещении определяется совместным действием ряда факторов: температуры, подвижности и влажности воздуха помещения, наличием струйных течений, распределением параметров воздуха в плане и по высоте помещения, а также радиационным излучением окружающих поверхностей, зависящим от их температуры, геометрии и радиационных свойств.

Для изучения формирования микроклимата, его динамики и способов воздействия на него нужно знать законы теплообмена в помещении.

Виды теплообмена в помещении: конвективный - возникает между воздухом и поверхностями ограждений и приборов системы отопления – охлаждения, лучистый - между отдельными поверхностями. В результате турбулентного перемешивания неизотермических струй воздуха с воздухом основного объема помещения происходит «струйный» теплообмен. Внутренние поверхности наружных ограждений в основном теплопроводностью через толщину конструкций передают теплоту наружному воздуху.

Тепловой баланс любой поверхности i в помещении может быть представлен на основе закона сохранения энергии уравнением:

где Лучистая Лi, конвективная Кi, Тi кондуктивная, составляющие теплообмена на поверхности.

Влага воздуха помещения

При расчете влагопередачи через ограждения необходимо знать влажностное состояние воздуха в помещении, определяемое выделением влаги и воздухообменом. Источниками влаги в жилых помещениях являются бытовые процессы (приготовление пищи, мытье полов и пр.), в общественных зданиях - находящиеся в них люди, в промышленных зданиях - технологические процессы.

Количество влаги в воздухе определяется eгo влагосодержание d, г влаги на 1 кг сухой части влажного воздуха. Кроме тoгo, eгo влажностное состояние характеризуется упругостью или парциальным давлением водяных паров е, Па, или относительной влажностью водяных паров φ, %,

Е- максимальная упругость при данной температуре.

Воздух обладает определенной влагоудерживающей способностью.

Чем суше воздух, тем с большей силой удерживается в нём водяной пар. Упругость водяного пара е отражает свободную энергию влаги в воздухе и возрастает от 0 (сухой воздух) до максимальной упругости Е , соответствующей полному насыщению воздуха.

Диффузия влаги происходит в воздухе от мест с большей упругостью водяных паров к местам с меньшей упругостью.

η возд = ∆d /∆е.

Упругость полного насыщения воздуха Е, Па, зависит от температуры t нас и с ее возрастанием увеличивается. Величина Е определяется:

Если необходимо знать температуру t нас, которой соответствует то или иное значение Е, можно определить:

Воздушный режим здания

Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми eгo помещениями и наружным воздухом, включающий перемещение воздуха внутри помещений, движение воздуха через ограждения, проемы, каналы и воздуховоды и обтекание здания потоком воздуха.

Воздухообмен в здании происходит под действием естественных сил и работы искусственных побудителей движения воздуха. Наружный воздух поступает в помещения через неплотности ограждений или по каналам приточных вентиляционных систем. Внутри здания воздух может перетекать между помещениями через двери и неплотности во внутренних конструкциях. Внутренний воздух удаляется из помещений за пределы здания через неплотности наружных ограждений и по вентиляционным каналам вытяжных систем.

Естественными силами, вызывающими движение воздуха в здании, являются гравитационное и ветровое давления.

Расчётная разность давлений:

1-ая часть-гравитационное давление, 2-ая-часть ветровое давление.

где Н-высота здания от поверхности земли до верха карниза.

Max из средних скоростей по румбам за январь.

С н,С п -аэродинамические коэффициенты с подветренной и наветренной поверхностей ограждения здания.

К i -коэф. учёта изменения скоростного давления ветра.

Температура и плотность воздуха внутри и снаружи здания обычно неодинаковы, в результате чего гравитационное давление по сторонам ограждений оказывается разным. За счет действия ветра на наветренной стороне здания создается подпор, а на поверхностях ограждений возникает избыточное статическое давление. На заветренной стороне образуется разрежение и статическое давление оказывается пониженным. Таким образом, при ветре давление с внешней стороны здания отличается от давления внутри помещений. Воздушный режим связан с тепловым режимом здания. Инфильтрация наружного воздуха приводит к дополнительным затратам теплоты на его подогрев. Эксфильтрация влажного внутреннего воздуха увлажняет и снижает теплозащитные свойства ограждений. Положение и размеры зоны инфильтрации и эксфильтрации в здании зависят от геометрии, конструктивных особенностей, режима вентилирования здания, а также от района строительства, времени года и параметров климата.

Между фильтрующимся воздухом и ограждением происходит теплообмен, интенсивность которого зависит от места фильтрации в конструкции (массив, стык панелей, окна, воздушные прослойки). Так, возникает необходимость в расчетах воздушного режима здания: определении интенсивности инфильтрации и эксфильтрации воздуха и решении задачи теплопередачи отдельных частей ограждения при наличии воздухопроницания.

Инфильтрация-проникновение воздуха в помещение.

Эксфильтрация-уход воздуха из помещения.

Предмет строительной теплофизики

Строительная теплофизика – наука, изучающая проблемы теплового, воздушного и влажностного состояний внутренней среды и ограждающих конструкций зданий любого назначения и занимающаяся вопросами создания микроклимата в помещениях, применяя системы кондиционирования (отопления –охлаждения и вентиляции) с учетом влияния наружного климата через ограждения.

Для понимания формирования микроклимата и определения возможных способов воздействия на него необходимо знать законы лучистого, конвективного и струйного теплообмена в помещении, уравнения общего теплообмена поверхностей помещения и уравнение теплообмена воздуха. На основе закономерностей теплообмена человека с окружающей средой формируются условия теплового комфорта в помещении.

Основное сопротивление потере теплоты из помещения оказывают теплозащитные свойства материалов ограждения, поэтому закономерности процесса теплопередачи через ограждения являются важнейшими при расчете системы отопления помещений. Влажностный режим ограждения является одним из основных при расчете теплопередачи, поскольку переувлажнение приводит к заметному снижению теплозащитных свойств и долговечности конструкции.

С тепловым режимом здания тесно связан и воздушный режим ограждений, поскольку инфильтрация наружного воздуха требует затрат теплоты на его подогрев, а эксфильтрация влажного внутреннего воздуха увлажняет материал ограждений.

Изучение выше рассмотренных вопросов позволят решать задачи создания микроклимата в зданиях в условиях эффективного и экономного расходования топливно-энергетических ресурсов.

Тепловой режим здания

Тепловым режимом здания называется совокупность всех факторов и процессов, определяющих тепловую обстановку в его помещениях.

Совокупность всех инженерных средств и устройств, обеспечивающих заданные условия микроклимата в помещениях здания, называют системой кондиционирования микроклимата (СКМ).

Под действием разности наружной и внутренней температур, солнечной радиации и ветра помещение теряет теплоту через ограждения зимой и нагревается летом. Гравитационные силы, действие ветра и вентиляция создают перепады давлений, приводящие к перетеканию воздуха между сообщающимися помещениями и к его фильтрации через поры материала и неплотности ограждений.

Атмосферные осадки, влаговыделения в помещениях, разность влажности внутреннего и наружного воздуха приводят к влагообмену в помещении, через ограждения, под влиянием которого возможно увлажнение материалов и ухудшение защитных свойств и долговечности наружных стен и покрытий.

Процессы, формирующие тепловую обстановку помещения, необходимо рассматривать в неразрывной связи между собой, так как их взаимное влияние может оказаться весьма существенным.

Анологично тепловому различают 3 задачи при рассмотрении в.р.з.

Внутреннию

Краевую

Внешнию.

К внутренней задачи относится:

1. расчет требуемого воздухообмена (определение кол-ва вредных выделений,производительнось местной и общеообменной вентиляции)

2. определение параметров внутреннего воздуха ,содержание вредных веществ

и распределение их по объёму помещений при разных схемах вентиляции;

выбор оптимальных схем подачи и удаления воздуха.

3. определение темп-ры и скорости воздуха в струях создаваемых притоком.

4. расчет количества вредностей выбивающихся из укрытий технологического

обородувания

5. создание нормальных условий труда,душирование и создание оазисов, путем выбора параметров приточного воздуха.

К краевой задачи относиться:

1.определение перетоков через наружные ограждения (инфильтрация),что приводит к увеличению теплопотерь и распрастранению неприятных запахов.

2. расчет проёмов для аэрации

3. расчёт размеров каналов, воздуховодов, шахт и др. элементов

4. выбор способа обработки воздуха переточного (нагрев,охлаждение,очистка) для вытяжного- очистка.

5.расчет защиты от врывания воздуха через открытые проёмы (воздушные завесы)

К внешней задачи относится:

1. определение давления создаваемого ветром на здание

2. расчет и определение проветриваемости пром. площадки

3. выбор мест размещения воздухозаборов и вытяжных шахт

4. расчет ПДВ и проверка достаточности степени очистки

  1. Местная вытяжная вентиляция. Местные отсосы, их классификация. Вытяжные зонты, требования и расчет.

Приемущества местной вытяжной вентиляции (МВВ)

Удаление вредных выделений непосредственно от мест их выделения

Относительно небольшие расходы воздуха.

В связи с этим МВВ наиболее эффективный и экономичный способ.

Основными элементами систем МВВ является

2 – сеть воздуховодов

3 – вентиляторы

4 – очистные устройства

Основные требования к местным отсосам:

1) локализация вредных выделений в месте их образования

2) удаление загрязненного воздуха за пределы помещения с высокими концентрациями на много больше чем при общеобменной вентиляции.

Требования которые предъявляют к МО разделяются на санитарно-гигиенические и технологические.

Санитарно-гигиенические требования:

1) максимальная локализация вредных выделений

2) удаляемый воздух не должени проходить через органы дыхания рабочих.

Технологические треьования:

1) место образования вредных выделений должно быть максимально укрыто на сколько это позволяет технологический процесс, а открытые рабочие проемы должны иметь минимальные размеры.


2) МО не должен мешать нормальной работе и снижать производительность труда.

3) Вредные выделения как правило должны удалятся от места их образования в направлении их интенсивного движения. Например горячие газы – вверх, холодные – вниз.

4) Конструкция МО должна быть простой, иметь малое аэродинамическое сопротивление, легко монтироватся и демонтироватся.

Классификация МО

Конструктивно МО оформляют в виде различных укрытий этих источников вредных выделений. По степени изоляции источника от окружающего пространстрва МО можно разделить на три группы:

1) открытые

2) полуоткрытые

3) закрытые

К МО открытого типа относятся воздухопроводы располагаемые за пределами источнмков вредных выделений над ним или сбоку или снизу, примерами таких таких МО является вытяжные панели.

К полуоткрытым относятся укрытие внутри которых находятся источники вредностей. Укрытие имеет открытый рабочий проем. Примереми таких укрытий является:

Вытяжные шкафы

Вентиляционные камеры или шкафы

Фасонные укрытия от вращающихся или режущих инструментов.

К полностью закрытые отсосы являются кожухом или частью аппарта, который имеет небольшие неплотности (в местах соприкосновения кожуха с движущимися частями оборудования). В настоящее время некоторые виды оборудования выполняются со всьроенными МО (это окрасочные и сушильные камеры, дерево оьрабатывающие станки).

Открытые МО. К открытым МО прибегают тогда когда неваозможно применить полуоткрытые ли полностью закрытые МО что обуславливается особенностями технолгического процесса. Наиболее распостраненнвми МО открытого типа являются зонты.

Вытяжные зонты.

Вытяжными зонтами называется воздухоприемники выполненные в виде усеченных перамид расположенные над источниками вредных выделений. Вытяжные зонты как правило служат только для улавливающихся вверх потоков вредных веществ. Это происходит когда вредные выделения нагреты и образуется стойкий температурный поток (температура >70). Вытяжные зонты имеют большое распостранение значительно больше того чем они заслуживают. Для зонтов характерно то, что между источником и воздухоприемником имеется разрыв, пространство незащищенное от воздуха окружающей среды. Вледствии чего окружающий воздух свободно подтекает к источнику и итклоняет поток вредных выделений. В результате чего зонты требуют значительных объемов, что являетяс недостатком зонта.

Зонты бывают:

1) простые

2) в виде козырьков

3) активные(со щелями по периметру)

4) с поддувом воздуха (активированные)

5) групповые.

Зонты устраиваются как с местной так и с механической вытяжной вентиляцией, но основное условие применение последних является наличие мощных гравитационных сил в потоке.

Для работы зонтов должно соблюдатся следующее

1) отсасываемое зонтом количество воздуха должно быть не менее того которое выделяется из источника и присоединяется на пути от исочника до зонта с учетом влияния боковых токов воздуха.

2) Воздух подтекающий к зонту должен иметь запас энергии (в основном тепловой достаточный для преодрления гравитационных сил)

3) Габариты зонта должны быть больше габаритов подтекающей среды/

4) Необходимо наличие организованного потока во избежании опрокидования тяги (для естественной вентиляции)

5) Эффективная работа зонта во многом определяется равномерности сечения. Она зависит от угла раскрытия зонта α. α =60 то Vц/Vс=1,03 для круглого или квадратного сечения, 1,09 для прямоугольного α=90 1,65.Рекомендуемый угол раскрытия α=65, при котором достигается наибольшая равномерность поля скоростей.

6) Размеры прямоугольного зонта в плане А=а+0,8h, Б=b+0,8h, где h расстояние от оборудования до низа зонта h<08dэ, где dэ эквивалентный по площади диаметр источника

7) Объем отсасываемого воздуха, определяется в зависимости от тепловой мощности источника и подвижности воздуха в помещении Vn при малой тепловой мощностим ведется по формулам L=3600*F3*V3 м3/ч где f3 – площадь всасывания, V3 – скорость всасывания. Для нетоксичных выделений V3=0.15-0.25 м/с. Для токсичных следует принимать V3= 1.05-1.25, 0.9-1.05, 0.75-0.9, 0.5-0.75 м/с.

При знасительных тепловыделениях объем воздуха отсасываемый зонтом определяется по формуле L 3 =L k F 3 /F n Lk- объем воздуха поднимающийся к зонту с конвективной струей Qk – количество конвективной теплоты выделенной с поверхности источника Q k = α k Fn(t n -t в).

Если расчет зонта производят на максимальное выделение вредности то можно активный зонт не устраивать, а обходится обычным зонтом.

  1. Отсасывающие панели и бортовые отсосы, особенности и расчет.

В тех случаях когда по конструктивным соображениям соосный отсос нельзя располагать достаточно близко над источником, и поэтому производительность отсоса чрезмерно высока. Когда необходимо отклонять поднимающийся над теплоисточником струю так чтобы вредные выделения не попадали в зону движения рабочего для этого применяют отсасывающие панели.

Конструктивно эти местные отсосы делятся на

1 – прямоугольные

2 – панели равномерного всасывания

прямоугольные всасывающие панели бывают трех видов:

а) односторонние

б) с экраном (для снижения объемного отсоса)

в) комбинированные (с отсосом в строну и вниз)

объем воздуха удаляемый любой панелью определяется по формуле где с – коэф. зависящий от конструкции панели и ее распложения относительно источника тепла, Qк – количество конвективного тепла выделяемого источникаом, H – расстояние от верхней плоскости источника до центра всасывающих отверстий панели, В – длинна источника.

Комбинированная панель применяется для удаления теплового потока содержащего не только газы, но и окружающую пыль 60% удаляется в сторону, а 40% вниз.

Панели равномерного всасывания применяются в сварочных цехах получили распространение наклонные панели обеспечивающие отклонение факела вредных веществ от лица сварщика. Одна из наиболее распостраненных является панель Чернобережского. Всасывающее отверстие выполнено в виде решетки, живое сечение щелей кот составляет 25% площади панели. Рекомендуемая скорость воздуха в живом сечении щелей принимается равной 3-4 м/с. Общий расход воздуха рассчитывается по удельному расходу равному 3300 м/ч на 1 м2 всасывающей панели.Бортовые тососы. Это устройство для удаления воздуха вместе с вредными выделениями в ванной где происходит термическая обработка. Отсос происходит по бортам.

Различают:

Однобортовые отсосы когда щель отсоса расположенная вдоль одной из длинных сторон ванны.

Двухбортовые, когда щели располженны с двух сторон.

Бортовой отсос является простым когда щели расположены в вертикальной плоскости.

Опрокинутый когда щель расположена горизонтально.

Бывают сплошные, секционные с поддувом.

Чем токсичнее выделения зеркала ванны, тем ближе их нужно прижимать к зеркалу, чтобы вредные выделения не попали в зону дыхания рабочих. Для этого при прочих равных условиях нужно повышать объемы отсасываемого воздуха.

При выборе типа бортого отсоса необходимо учитывать следующее:

1) простые отсосы следует применять при высоком стоянии уровня раствора в ванне, когда расстояние до щели отсоса составляет менее 80-150 мм, при более низком стоянии применяют опрокинутые отсосы, требующие значительно меньше расхода воздуха.

2) Однобортовые применяют если ширина ванны значительно меньше 600мм, если больше то двухбортовые.

3) Если по ходу продува в ванну опускают крупные вещи которые могут нарушать работу однобортового отсоса, то применяю двухботовые.

4) Сплошные по конструкции применяются при длинне до 1200мм а сенкционные при длнинне больше 1200мм.

5) Применять отсосы с поддувом при ширине ванны более 1500мм. Когда поверхность раствора совершенно гладкая, нет выступающих частей, отсутствует оперция окунания.

Эффективность улавливания вредных вкществ зависит от равномерности всасывания по длине щели. Задача расчета бортовых отсосов сводится к:

1) выбору конструкции

2) определению объемов отсасываемого воздуха

разработано несколько видов расчета бортовых отсосов:

метод М.М. Баранова объемный расход воздуха для бортовых отсосов определяется по формуле:

где а – табличное значение удельного расхода воздуха в зависимостьи от длинны ванны, x – поправочный коэффициент на глубину уровня жидкости в ванне, S – поправочный коэффициент на подвижность воздуха в помещении, l – длинна ванны.

Бортовой отсос со сдувом это простой однобортовой отсос активированный воздухом при помощи струи направленной на отсос вдоль зеркала ванны, чтобы она налегала на него, при этом струя становится более дальнобойной и расход в ней уменьшается, объем воздуха на сдув равен L=300kB 2 l

Основные параметры физико-климатических факторов

Климат - совокупность погодных условий, повторяющихся из года в год. На климат влияют: высота, географическое положение, близость больших водоемов, течение, преобладающие ветра. Воздух (температура, влажность, ветер), температура и влажность грунта, осадки, солнечная радиация.

Факторы, определяющие микроклимат помещения

Тепловая обстановка в помещении определяется совместным действием ряда факторов: температуры, подвижности и влажности воздуха помещения, наличием струйных течений, распределением параметров состояния воздуха в плане и по высоте помещения (всё вышеперечисленное характеризует воздушный режим помещения), а также радиационным излучением окружающих поверхностей, зависящим от их температуры, геометрии и радиационных свойств (характеризующим радиационный режим помещения). Комфортное сочетание этих показателей соответствует условиям, при которых отсутствует напряжение в процессе терморегуляции человека.

Воздушный и радиационный режим помещения

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания потоком воздуха и взаимодействия здания с окружающей воздушной средой объединяются общим понятием воздушный режим здания. В отоплении рассматривается тепловой режим здания. Эти два режима, а также влажностный режим тесно связаны между собой. Аналогично тепловому режиму при рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор производительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и распределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости движения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воздуха и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Радиационный режим. Лучистый теплообмен.

Важной составляющей сложного физического процесса, обуславливающего тепловой режим помещения, является теплообмен на его поверхностях.

Лучистый теплообмен в помещении имеет особенность: он происходит в замкнутом объеме в условиях ограниченных температур, определенных радиационных свойств поверхностей и геометрии их расположения. Тепловое излучение поверхностей в помещении можно рассматривать как монохроматическое, диффузное, подчиняющееся законам Стефана-Больцмана, Ламберта и Кирхгофа, инфракрасное излучение серых тел.

Как один из видов поверхностей в помещении своеобразные радиационные свойства имеет оконное стекло. Оно частично проницаемо для излучения. Оконное стекло, хорошо пропускающее коротковолновое излучение, практически непрозрачно для излучения с длиной волн более 3-5 мкм, которое характерно для теплообмена в помещении.

Воздух помещения при расчете лучистого теплообмена между поверхностями обычно считают лучепрозрачной средой. Он состоит в основном из двухатомных газов (азота и кислорода), которые практически прозрачны для тепловых лучей и сами не излучают тепловой энергии. Незначительное содержание многоатомных газов (водяного пара и углекислого газа) при малой толщине слоя воздуха в помещении практически не изменяет этого свойства.

Воздушным режимом здания называют совокупность факторов и явлений, определяющих общий процесс обмена воздуха между всеми его помещениями и наружным воздухом, включающий перемещение воздуха внутри помещений, движение воздуха через ограждения, проемы, каналы и воздуховоды и обтекание здания потоком воздуха. Традиционно при рассмотрении отдельных вопросов воздушного режима здания их объединяют в три задачи: внутреннюю, краевую и внешнюю.

Общая физико-математическая постановка задачи о воздушном режиме здания возможна лишь в самом обобщенном виде. Отдельные процессы весьма сложны. Описание их базируется на классических уравнениях переноса массы, энергии, импульса в турбулентном потоке.

С позиций специальности «Теплоснабжение и вентиляция» наиболее актуальны следующие явления: инфильтрация и эксфильтрация воздуха через наружные ограждения и проемы (неорганизованный естественный воздухообмен, увеличивающий теплопотери помещения и снижающий теплозащитные свойства наружных ограждений); аэрация (организованный естественный воздухообмен для вентиляции теплонапряженных помещений); перетекание воздуха между смежными помещениями (неорганизованное и организованное).

Естественными силами, вызывающими движение воздуха в здании, являются гравитационное и ветровое давления. Температура и плотность воздуха внутри и снаружи здания обычно неодинаковы, в результате чего гравитационное давление по сторонам ограждений оказывается разным. За счет действия ветра на наветренной стороне здания создается подпор, а на поверхностях ограждений возникает избыточное статическое давление. На заветренной стороне образуется разрежение и статическое давление оказывается пониженным. Таким образом, при ветре давление с внешней стороны здания отличается от давления внутри помещений.

Гравитационное и ветровое давления обычно действуют совместно. Воздухообмен под влиянием этих естественных сил трудно рассчитывать и прогнозировать. Его можно уменьшить, уплотняя ограждения, а также частично регулировать с помощью дросселирования каналов вентиляции, открыванием окон, фрамуr и вентиляционных фонарей.

Воздушный режим связан с тепловым режимом здания. Инфильтрация наружного воздуха приводит к дополнительным затратам тепла на его подогрев. Эксфильтрация влажного внутреннего воздуха увлажняет и снижает теплозащитные свойства ограждений.

Положение и размеры зоны инфильтрации и эксфильтрации в здании зависят от геометрии, конструктивных особенностей, режима вентилирования здания, а также от района строительства, времени года и параметров климата.

Между фильтрующимся воздухом и ограждением происходит теплообмен, интенсивность которого зависит от места фильтрации в конструкции ограждения (массив, стык панелей, окна, воздушные прослойки и т. д.). Таким образом, возникает необходимость в расчетах воздушного режима здания: определении интенсивности инфильтрации и эксфильтрации воздуха и решении задачи теплопередачи отдельных частей ограждения при наличии воздухопроницания.