Квадратні рівняння. Вичерпний гід (2019)


Протягом теми «Рішення рівнянь» матеріал цієї статті познайомить вас із квадратними рівняннями.

Розглянемо все докладно: суть і запис квадратного рівняння, поставимо супутні терміни, розберемо схему розв'язання неповних і повних рівнянь, познайомимося з формулою коренів і дискримінантом, встановимо зв'язки між корінням і коефіцієнтами, і наведемо наочне рішення практичних прикладів.

Yandex.RTB R-A-339285-1

Квадратне рівняння, його види

Визначення 1

Квадратне рівняння– це рівняння, записане як a · x 2 + b · x + c = 0, де x- Змінна, a, b і c- Деякі числа, при цьому aнемає нуль.

Найчастіше квадратні рівняння також звуться рівнянь другого ступеня, оскільки насправді квадратне рівняння є алгебраїчне рівняння другого ступеня.

Наведемо приклад для ілюстрації заданого визначення: 9 · x 2 + 16 · x + 2 = 0; 7, 5 · x 2 + 3, 1 · x + 0, 11 = 0 і т.п. - Це квадратні рівняння.

Визначення 2

Числа a, b і c– це коефіцієнти квадратного рівняння a · x 2 + b · x + c = 0, при цьому коефіцієнт aносить назву першого, або старшого, або коефіцієнта при x 2 b - другого коефіцієнта, або коефіцієнта при x, а cназивають вільним членом.

Наприклад, у квадратному рівнянні 6 · x 2 − 2 · x − 11 = 0старший коефіцієнт дорівнює 6 другий коефіцієнт є − 2 , а вільний член дорівнює − 11 . Звернемо увагу на той факт, що коли коефіцієнти bта/або c є негативними, то використовується коротка формазапису виду 6 · x 2 − 2 · x − 11 = 0, а не 6 · x 2 + (−2) · x + (− 11) = 0.

Уточнимо також такий аспект: якщо коефіцієнти aта/або bрівні 1 або − 1 , то явної участі в записі квадратного рівняння вони можуть не брати, що пояснюється особливостями запису вказаних числових коефіцієнтів. Наприклад, у квадратному рівнянні y 2 − y + 7 = 0старший коефіцієнт дорівнює 1 а другий коефіцієнт є − 1 .

Наведені та ненаведені квадратні рівняння

За значенням першого коефіцієнта квадратні рівняння поділяють на наведені та ненаведені.

Визначення 3

Наведене квадратне рівняння- Це квадратне рівняння, де старший коефіцієнт дорівнює 1. За інших значень старшого коефіцієнта квадратне рівняння є ненаведеним.

Наведемо приклади: квадратні рівняння x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 є наведеними, у кожному з яких старший коефіцієнт дорівнює 1 .

9 · x 2 − x − 2 = 0- ненаведене квадратне рівняння, де перший коефіцієнт відмінний від 1 .

Будь-яке ненаведене квадратне рівняння можна перетворити на наведене рівняння, якщо розділити обидві його частини на перший коефіцієнт (рівносильне перетворення). Перетворене рівняння матиме таке ж коріння, як і задане ненаведене рівняння або не мати коріння зовсім.

Розгляд конкретного прикладу дозволить нам продемонструвати виконання переходу від ненаведеного квадратного рівняння до наведеного.

Приклад 1

Задано рівняння 6 · x 2 + 18 · x − 7 = 0 . Необхідно перетворити вихідне рівняння на наведену форму.

Рішення

Згідно з зазначеною вище схемою розділимо обидві частини вихідного рівняння на старший коефіцієнт 6 . Тоді отримаємо: (6 · x 2 + 18 · x − 7): 3 = 0: 3, і це те саме, що: (6 · x 2) : 3 + (18 · x) : 3 − 7: 3 = 0і далі: (6: 6) · x 2 + (18: 6) · x − 7: 6 = 0 .Звідси: x 2 + 3 · x - 1 1 6 = 0. Таким чином, отримано рівняння, рівносильне заданому.

Відповідь: x 2 + 3 · x - 1 1 6 = 0.

Повні та неповні квадратні рівняння

Звернемося до визначення квадратного рівняння. У ньому ми уточнили, що a ≠ 0. Подібна умова необхідна, щоб рівняння a · x 2 + b · x + c = 0було саме квадратним, оскільки при a = 0воно по суті перетворюється на лінійне рівняння b · x + c = 0.

У разі, коли коефіцієнти bі cрівні нулю (що можливо, як окремо, і спільно), квадратне рівняння зветься неповного.

Визначення 4

Неповне квадратне рівняння– таке квадратне рівняння a · x 2 + b · x + c = 0де хоча б один із коефіцієнтів bі c(або обидва) дорівнює нулю.

Повне квадратне рівняння- Квадратне рівняння, в якому всі числові коефіцієнти не рівні нулю.

Поміркуємо чому типам квадратних рівняньдано саме такі назви.

При b = 0 квадратне рівняння набуде вигляду a · x 2 + 0 · x + c = 0, що те саме, що a · x 2 + c = 0. При c = 0квадратне рівняння записано як a · x 2 + b · x + 0 = 0, що рівносильно a · x 2 + b · x = 0. При b = 0і c = 0рівняння набуде вигляду a · x 2 = 0. Рівняння, які ми отримали, відмінні від повного квадратного рівняння тим, що в їх лівих частинах не міститься або доданку зі змінною x, або вільного члена, або обох одночасно. Власне, цей факт і поставив назву такого типу рівнянь – неповна.

Наприклад, x 2 + 3 · x + 4 = 0 і − 7 · x 2 − 2 · x + 1 , 3 = 0 – це повні квадратні рівняння; x 2 = 0, − 5 · x 2 = 0; 11 · x 2 + 2 = 0, − x 2 − 6 · x = 0 – неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь

Задане вище визначення дозволяє виділити такі види неповних квадратних рівнянь:

  • a · x 2 = 0, такому рівнянню відповідають коефіцієнти b = 0і c = 0;
  • a · x 2 + c = 0 при b = 0;
  • a · x 2 + b · x = 0 при c = 0.

Розглянемо послідовно розв'язання кожного виду неповного квадратного рівняння.

Розв'язання рівняння a x 2 = 0

Як було зазначено вище, такому рівнянню відповідають коефіцієнти bі c, що дорівнює нулю. Рівняння a · x 2 = 0можна перетворити на рівносильне йому рівняння x 2 = 0, яке ми отримаємо, поділивши обидві частини вихідного рівняння на число a, що не дорівнює нулю. Очевидний факт, що корінь рівняння x 2 = 0це нуль, оскільки 0 2 = 0 . Іншого коріння це рівняння не має, що можна пояснити властивостями ступеня: для будь-якого числа p ,не рівного нулю, вірна нерівність p 2 > 0, з чого випливає, що за p ≠ 0рівність p 2 = 0ніколи не буде досягнуто.

Визначення 5

Таким чином, для неповного квадратного рівняння a · x 2 = 0 існує єдиний корінь x = 0.

Приклад 2

Наприклад вирішимо неповне квадратне рівняння − 3 · x 2 = 0. Йому рівносильне рівняння x 2 = 0, його єдиним коренем є x = 0тоді і вихідне рівняння має єдиний корінь - нуль.

Коротко рішення оформляється так:

− 3 · x 2 = 0, x 2 = 0, x = 0.

Розв'язання рівняння a · x 2 + c = 0

На черзі - розв'язання неповних квадратних рівнянь, де b = 0 c ≠ 0 тобто рівнянь виду a · x 2 + c = 0. Перетворимо це рівняння, перенісши доданок з однієї частини рівняння на іншу, змінивши знак на протилежний і розділивши обидві частини рівняння на число, що не дорівнює нулю:

  • переносимо cв праву частинущо дає рівняння a · x 2 = − c;
  • ділимо обидві частини рівняння на a, Отримуємо в результаті x = - C a.

Наші перетворення є рівносильними, відповідно отримане рівняння також рівносильно вихідному, і цей факт дає можливість робити висновок про коріння рівняння. Від того, які значення aі cзалежить значення виразу - c a: воно може мати знак мінус (припустимо, якщо a = 1і c = 2тоді - c a = - 2 1 = - 2) або знак плюс (наприклад, якщо a = − 2і c = 6, то - c a = - 6 - 2 = 3); воно не дорівнює нулю, оскільки c ≠ 0. Докладніше зупинимося на ситуаціях, коли - c a< 0 и - c a > 0 .

У разі коли - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа pрівність p 2 = - c a може бути вірним.

Все інакше, коли - c a > 0: згадаємо про квадратне коріння, і стане очевидним, що коренем рівняння x 2 = - c a буде число - c a , оскільки - c a 2 = - c a . Неважко зрозуміти, що число - - a - також корінь рівняння x 2 = - a: дійсно, - - a 2 = - c a .

Іншого коріння рівняння не матиме. Ми можемо це продемонструвати, використовуючи метод протилежного. Для початку поставимо позначення знайдених вище коренів як x 1і − x 1. Висловимо припущення, що рівняння x 2 = - a має також корінь x 2, який відрізняється від коріння x 1і − x 1. Ми знаємо, що, підставивши в рівняння замість xйого коріння, перетворимо рівняння на справедливу числову рівність.

Для x 1і − x 1запишемо: x 1 2 = - c a , а для x 2- x 2 2 = - C a. Спираючись на властивості числових рівностей, почленно віднімемо одну правильну рівність з іншої, що дасть нам: x 1 2 − x 2 2 = 0. Використовуємо властивості дій з числами, щоб переписати останню рівність як (x 1 − x 2) · (x 1 + x 2) = 0. Відомо, що добуток двох чисел є нуль тоді і лише тоді, коли хоча б одне із чисел є нулем. Зі сказаного випливає, що x 1 − x 2 = 0та/або x 1 + x 2 = 0, що те саме, x 2 = x 1та/або x 2 = − x 1. Виникла очевидна суперечність, адже спочатку було зумовлено, що корінь рівняння x 2відрізняється від x 1і − x 1. Так, ми довели, що рівняння не має іншого коріння, крім x = - c a і x = - c a .

Резюмуємо всі міркування вище.

Визначення 6

Неповне квадратне рівняння a · x 2 + c = 0рівносильне рівнянню x 2 = - c a , яке:

  • не матиме коріння при - c a< 0 ;
  • матиме два корені x = - c a та x = - - c a при - c a > 0 .

Наведемо приклади розв'язування рівнянь a · x 2 + c = 0.

Приклад 3

Задано квадратне рівняння 9 · x 2 + 7 = 0.Потрібно знайти його рішення.

Рішення

Перенесемо вільний член у праву частину рівняння, тоді рівняння набуде вигляду 9 · x 2 = − 7 .
Розділимо обидві частини отриманого рівняння на 9 прийдемо до x 2 = - 7 9 . У правій частині бачимо число зі знаком мінус, що означає: задане рівняння не має коріння. Тоді й вихідне неповне квадратне рівняння 9 · x 2 + 7 = 0не матиме коріння.

Відповідь:рівняння 9 · x 2 + 7 = 0не має коріння.

Приклад 4

Необхідно вирішити рівняння − x 2 + 36 = 0.

Рішення

Перенесемо 36 у праву частину: − x 2 = − 36.
Розділимо обидві частини на − 1 , отримаємо x 2 = 36. У правій частині - позитивне число, звідси можна дійти невтішного висновку, що x = 36 або x = -36.
Виймемо корінь і запишемо остаточний підсумок: неповне квадратне рівняння − x 2 + 36 = 0має два корені x = 6або x = − 6.

Відповідь: x = 6або x = − 6.

Розв'язання рівняння a x 2 + b x = 0

Розберемо третій вид неповних квадратних рівнянь, коли c = 0. Щоб знайти розв'язок неповного квадратного рівняння a · x 2 + b · x = 0, скористаємося методом розкладання на множники Розкладемо на множники багаточлен, що знаходиться в лівій частині рівняння, винісши за дужки загальний множник x. Цей крок дасть можливість перетворити вихідне неповне квадратне рівняння на рівносильне йому x · (a · x + b) = 0. А це рівняння, у свою чергу, рівносильне сукупності рівнянь x = 0і a · x + b = 0. Рівняння a · x + b = 0лінійне, і корінь його: x = − b a.

Визначення 7

Таким чином, неповне квадратне рівняння a · x 2 + b · x = 0матиме два корені x = 0і x = − b a.

Закріпимо матеріал прикладом.

Приклад 5

Необхідно знайти рішення рівняння 2 3 · x 2 - 2 2 7 · x = 0.

Рішення

Винесемо xза дужки та отримаємо рівняння x · 2 3 · x - 2 2 7 = 0 . Це рівняння рівносильне рівнянням x = 0та 2 3 · x - 2 2 7 = 0 . Тепер слід розв'язати отримане лінійне рівняння: 2 3 · x = 2 2 7 x = 2 2 7 2 3 .

Коротко рішення рівняння запишемо так:

2 3 · x 2 - 2 2 7 · x = 0 x · 2 3 · x - 2 2 7 = 0

x = 0 або 2 3 · x - 2 2 7 = 0

x = 0 або x = 3 3 7

Відповідь: x = 0, x = 3 3 7 .

Дискримінант, формула коренів квадратного рівняння

Для знаходження розв'язання квадратних рівнянь існує формула коренів:

Визначення 8

x = - b ± D 2 · a де D = b 2 − 4 · a · c- Так званий дискримінант квадратного рівняння.

Запис x = - b ± D 2 · a по суті означає, що x 1 = - b + D 2 · a x 2 = - b - D 2 · a .

Не зайвим буде розуміти, як було виведено зазначену формулу і як її застосовувати.

Висновок формули коріння квадратного рівняння

Нехай перед нами стоїть завдання розв'язати квадратне рівняння a · x 2 + b · x + c = 0. Здійснимо ряд рівносильних перетворень:

  • розділимо обидві частини рівняння на число a, Відмінне від нуля, отримаємо наведене квадратне рівняння: x 2 + b a · x + c a = 0;
  • виділимо повний квадрат в лівій частині рівняння, що вийшло:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    Після цього рівняння набуде вигляду: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • тепер можна зробити перенесення двох останніх доданків у праву частину, змінивши знак на протилежний, після чого отримуємо: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • нарешті, перетворимо вираз, записаний у правій частині останньої рівності:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Таким чином, ми дійшли рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , рівносильному вихідному рівнянню a · x 2 + b · x + c = 0.

Вирішення подібних рівнянь ми розбирали в попередніх пунктах (вирішення неповних квадратних рівнянь). Вже отриманий досвід дає можливість зробити висновок щодо коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • при b 2 - 4 · a · c 4 · a 2< 0 уравнение не имеет действительных решений;
  • при b 2 - 4 · a · c 4 · a 2 = 0 рівняння має вигляд x + b 2 · a 2 = 0 тоді x + b 2 · a = 0 .

Звідси очевидний єдиний корінь x = - b 2 · a;

  • при b 2 - 4 · a · c 4 · a 2 > 0 вірним буде: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , що те саме, що x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = - b 2 · a - b 2 - 4 · a · c 4 · a 2, тобто. рівняння має два корені.

Можливо зробити висновок, що наявність або відсутність коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (а значить і вихідного рівняння) залежить від знака виразу b 2 - 4 · a · c 4 · a 2, записаного у правій частині. А знак цього виразу задається знаком чисельника, (знаменник 4 · a 2завжди буде позитивним), тобто, знаком виразу b 2 − 4 · a · c. Цьому виразу b 2 − 4 · a · cдано назву - дискримінант квадратного рівняння і визначена як його позначення літера D. Тут можна записати суть дискримінанта - за його значенням і знаком роблять висновок, чи буде квадратне рівняння мати дійсне коріння, і, якщо буде, то яка кількість коренів - один або два.

Повернемося до рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Перепишемо його, використовуючи позначення дискримінанта: x + b 2 · a 2 = D 4 · a 2 .

Знову сформулюємо висновки:

Визначення 9

  • при D< 0 рівняння не має дійсних коренів;
  • при D = 0рівняння має єдиний корінь x = - b 2 · a;
  • при D > 0рівняння має два корені: x = - b 2 · a + D 4 · a 2 або x = - b 2 · a - D 4 · a 2 . Це коріння на основі властивості радикалів можна записати у вигляді: x = - b 2 · a + D 2 · a або - b 2 · a - D 2 · a . А коли розкриємо модулі і приведемо дроби до спільного знаменника, отримаємо: x = - b + D 2 · a , x = - b - D 2 · a .

Так, результатом наших міркувань стало виведення формули коріння квадратного рівняння:

x = - b + D 2 · a , x = - b - D 2 · a , дискримінант Dобчислюється за формулою D = b 2 − 4 · a · c.

Дані формули дають можливість при дискримінанті більше нуля визначити обидва дійсні корені. Коли дискримінант дорівнює нулю, застосування обох формул дасть той самий корінь, як єдине рішення квадратного рівняння. У випадку, коли дискримінант негативний, спробувавши використати формулу кореня квадратного рівняння, ми зіткнемося з необхідністю витягти квадратний корінь негативного числа, що виведе нас за межі дійсних чисел. При негативному дискримінанті у квадратного рівняння не буде дійсних коренів, але можлива пара комплексно пов'язаних коренів, що визначаються тими самими отриманими нами формулами коренів.

Алгоритм розв'язання квадратних рівнянь за формулами коренів

Вирішити квадратне рівняння можливо, відразу задіюючи формулу коренів, але в основному так роблять при необхідності знайти комплексне коріння.

У більшості випадків зазвичай мається на увазі пошук не комплексних, а дійсних коренів квадратного рівняння. Тоді оптимально перед тим, як використовувати формули коренів квадратного рівняння, спочатку визначити дискримінант і переконатися, що він не є негативним (інакше зробимо висновок, що у рівняння немає дійсних коренів), а потім приступити до обчислення значення коренів.

Міркування вище дають можливість сформулювати алгоритм розв'язання квадратного рівняння.

Визначення 10

Щоб розв'язати квадратне рівняння a · x 2 + b · x + c = 0, необхідно:

  • за формулою D = b 2 − 4 · a · cвизначити значення дискримінанта;
  • при D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 знайти єдиний корінь рівняння за формулою x = - b 2 · a;
  • при D > 0 визначити два дійсних кореня квадратного рівняння за формулою x = - b ± D 2 · a.

Зазначимо, що коли дискримінант є нуль, можна використовувати формулу x = - b ± D 2 · a , вона дасть той же результат, що і формула x = - b 2 · a .

Розглянемо приклади.

Приклади розв'язання квадратних рівнянь

Наведемо рішення прикладів за різних значень дискримінанта.

Приклад 6

Необхідно знайти коріння рівняння x 2 + 2 · x − 6 = 0.

Рішення

Запишемо числові коефіцієнти квадратного рівняння: a = 1, b = 2 і c = − 6. Далі діємо алгоритмом, тобто. приступимо до обчислення дискримінанта, для чого підставимо коефіцієнти a, b і cу формулу дискримінанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Отже, ми отримали D > 0 , а це означає, що вихідне рівняння матиме два дійсні корені.
Для їхнього знаходження використовуємо формулу кореня x = - b ± D 2 · a і, підставивши відповідні значення, отримаємо: x = - 2 ± 28 2 · 1 . Спростимо отриманий вираз, винісши множник за знак кореня з наступним скороченням дробу:

x = - 2 ± 2 · 7 2

x = - 2 + 2 · 7 2 або x = - 2 - 2 · 7 2

x = - 1 + 7 або x = - 1 - 7

Відповідь: x = - 1 + 7, x = - 1 - 7 .

Приклад 7

Необхідно розв'язати квадратне рівняння − 4 · x 2 + 28 · x − 49 = 0.

Рішення

Визначимо дискримінант: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. При такому значенні дискримінанта вихідне рівняння матиме лише один корінь, який визначається за формулою x = - b 2 · a .

x = - 28 2 · (- 4) x = 3 , 5

Відповідь: x = 3, 5.

Приклад 8

Необхідно вирішити рівняння 5 · y 2 + 6 · y + 2 = 0

Рішення

Числові коефіцієнти цього рівняння будуть: a = 5 b = 6 і c = 2 . Використовуємо ці значення для знаходження дискримінанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Обчислений дискримінант негативний, таким чином, вихідне квадратне рівняння не має дійсних коренів.

У разі, коли стоїть завдання вказати комплексне коріння, застосуємо формулу коренів, виконуючи дії з комплексними числами:

x = - 6 ± - 4 2 · 5

x = - 6 + 2 · i 10 або x = - 6 - 2 · i 10

x = - 3 5 + 1 5 · i або x = - 3 5 - 1 5 · i.

Відповідь:дійсне коріння відсутнє; комплексні коріння наступні: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

У шкільній програмі стандартно немає вимоги шукати комплексне коріння, тому, якщо в ході рішення дискримінант визначений як негативний, відразу записується відповідь, що дійсних коренів немає.

Формула коренів для парних других коефіцієнтів

Формула коренів x = - b ± D 2 · a (D = b 2 − 4 · a · c) дає можливість отримати ще одну формулу, більш компактну, що дозволяє знаходити розв'язки квадратних рівнянь з парним коефіцієнтом при x (або з коефіцієнтом виду 2 · n, наприклад, 2 · 3 або 14 · ln 5 = 2 · 7 · ln 5). Покажемо, як виводиться ця формула.

Нехай перед нами стоїть завдання знайти розв'язок квадратного рівняння a · x 2 + 2 · n · x + c = 0 . Діємо за алгоритмом: визначаємо дискримінант D = (2 · n) 2 - 4 · a · c = 4 · n 2 - 4 · a · c = 4 · (n 2 - a · c), а потім використовуємо формулу коренів:

x = - 2 · n ± D 2 · a , x = - 2 · n ± 4 · n 2 - a · c 2 · a , x = - 2 · n ± 2 n 2 - a · c 2 · a , x = - n ± n 2 - a · c a.

Нехай вираз n 2 − a · c буде позначено як D 1 (іноді його позначають D "). Тоді формула коренів квадратного рівняння, що розглядається, з другим коефіцієнтом 2 · n набуде вигляду:

x = - n ± D 1 a де D 1 = n 2 − a · c .

Легко побачити, що D = 4 · D 1 або D 1 = D 4 . Інакше висловлюючись, D 1 – це чверть дискримінанта. Очевидно, що знак D 1 такий самий, як знак D , а значить знак D 1 може служити індикатором наявності або відсутності коренів квадратного рівняння.

Визначення 11

Таким чином, щоб знайти розв'язок квадратного рівняння з другим коефіцієнтом 2 · n необхідно:

  • знайти D 1 = n 2 − a · c;
  • при D 1< 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 визначити єдиний корінь рівняння за формулою x = - n a;
  • при D 1 > 0 визначити два дійсних кореня за формулою x = - n ± D 1 a.

Приклад 9

Необхідно розв'язати квадратне рівняння 5 · x 2 − 6 · x − 32 = 0 .

Рішення

Другий коефіцієнт заданого рівняння можемо уявити як 2 · (− 3) . Тоді перепишемо задане квадратне рівняння як 5 · x 2 + 2 · (− 3) · x − 32 = 0 де a = 5 , n = − 3 і c = − 32 .

Обчислимо четверту частину дискримінанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169 . Отримане значення позитивно, це означає, що рівняння має два дійсні корені. Визначимо їх за відповідною формулою коренів:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 або x = 3 - 13 5

x = 3 1 5 або x = - 2

Можливо було б зробити обчислення і за звичайною формулою коренів квадратного рівняння, але в такому разі рішення було б більш громіздким.

Відповідь: x = 3 1 5 або x = -2.

Спрощення виду квадратних рівнянь

Іноді є можливість оптимізувати вид вихідного рівняння, що дозволить спростити процес обчислення коренів.

Наприклад, квадратне рівняння 12 · x 2 − 4 · x − 7 = 0 явно зручніше для розв'язання, ніж 1200 · x 2 − 400 · x − 700 = 0 .

Найчастіше спрощення виду квадратного рівняння виробляється процесами множення чи розподілу його обох елементів на деяке число. Наприклад, ми показали спрощену запис рівняння 1200 · x 2 − 400 · x − 700 = 0 , отриману розподілом обох його частин на 100 .

Таке перетворення можливе, коли коефіцієнти квадратного рівняння є взаємно простими числами. Тоді зазвичай здійснюють розподіл обох частин рівняння найбільший загальний дільник абсолютних величин його коефіцієнтів.

Як приклад використовуємо квадратне рівняння 12 · x 2 - 42 · x + 48 = 0. Визначимо НОД абсолютних величин його коефіцієнтів: НОД (12 , 42 , 48) = НОД (НОД (12 , 42) , 48) = НОД (6 , 48) = 6 . Зробимо поділ обох частин вихідного квадратного рівняння на 6 і отримаємо рівносильне йому квадратне рівняння 2 x 2 − 7 x + 8 = 0 .

Множенням обох частин квадратного рівняння зазвичай позбавляються дробових коефіцієнтів. У цьому множать найменше загальне кратне знаменників його коефіцієнтів. Наприклад, якщо кожну частину квадратного рівняння 1 6 · x 2 + 2 3 · x - 3 = 0 перемножити з НОК (6 , 3 , 1) = 6 , воно стане записано в більш простому вигляді x 2 + 4 · x − 18 = 0.

Насамкінець відзначимо, що майже завжди позбавляються мінуса при першому коефіцієнті квадратного рівняння, змінюючи знаки кожного члена рівняння, що досягається шляхом множення (або поділу) обох частин на − 1 . Наприклад, від квадратного рівняння − 2 · x 2 − 3 · x + 7 = 0 можна перейти до спрощеної його версії 2 · x 2 + 3 · x − 7 = 0 .

Зв'язок між корінням та коефіцієнтами

Вже відома нам формула коренів квадратних рівнянь x = - b ± D 2 · a виражає коріння рівняння через його числові коефіцієнти. Спираючись на цю формулу, ми маємо можливість задати інші залежності між корінням та коефіцієнтами.

Найбільш відомими та застосовними є формули теореми Вієта:

x 1 + x 2 = - a і x 2 = c a .

Зокрема, для наведеного квадратного рівняння сума коренів є другий коефіцієнт із протилежним знаком, а добуток коренів дорівнює вільному члену. Наприклад, у вигляді квадратного рівняння 3 · x 2 − 7 · x + 22 = 0 можна відразу визначити, що його коренів дорівнює 7 3 , а добуток коренів - 22 3 .

Також можна знайти ряд інших зв'язків між корінням та коефіцієнтами квадратного рівняння. Наприклад, сума квадратів коренів квадратного рівняння може бути виражена через коефіцієнти:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 · x 1 · x 2 = - b a 2 - 2 · c a = b 2 a 2 - 2 · c a = b 2 - 2 · a · c a 2 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Рішення рівнянь у математиці посідає особливе місце. Цьому процесу передує безліч годин вивчення теорії, в ході яких учень дізнається способи розв'язання рівнянь, визначення їх виду і доводить навичку до автоматизації. Однак далеко не завжди пошук коренів має сенс, тому що їх може просто не бути. Існують особливі прийоми знаходження коріння. У цій статті ми розберемо основні функції, їх області визначення, а також випадки, коли їхнє коріння немає.

Яке рівняння не має коріння?

Рівняння немає коренів у разі, якщо немає таких дійсних аргументів x, у яких рівняння тотожно правильно. Для нефахівця дане формулювання, як і більшість математичних теорем і формул, виглядає дуже розмитим і абстрактним, проте це в теорії. На практиці все стає дуже просто. Наприклад: рівняння 0 * х = -53 не має рішення, тому що не знайдеться такого числа х, твір якого з нулем дав би щось, крім нуля.

Зараз ми розглянемо самі базові типирівнянь.

1. Лінійне рівняння

Рівняння називається лінійним, якщо його права та ліва частини представлені у вигляді лінійних функцій: ax + b = cx + d або в узагальненому вигляді kx + b = 0. Де а, b, с, d – відомі числа, а х – невідома величина . Яке рівняння не має коріння? Приклади лінійних рівнянь подано на ілюстрації нижче.

В основному лінійні рівняння вирішуються простим перенесенням числової частини в одну частину, а вмісту з х - в іншу. Виходить рівняння виду mx = n, де m і n – числа, а х – невідоме. Щоб знайти х, достатньо поділити обидві частини на m. Тоді x = n/m. В основному лінійні рівняння мають тільки один корінь, проте трапляються випадки, коли коренів або нескінченно багато, або немає зовсім. При m = 0 і n = 0 рівняння набуває вигляду 0 * х = 0. Рішенням такого рівняння буде абсолютно будь-яке число.

Проте яке рівняння не має коріння?

При m = 0 і n = 0 рівняння немає коренів із безлічі дійсних чисел. 0 * х = -1; 0 * х = 200 - ці рівняння немає коренів.

2. Квадратне рівняння

Квадратним рівнянням називається рівняння виду ax 2 + bx + c = 0 при а = 0. Найпоширенішим є рішення через дискримінант. Формула знаходження дискримінанта квадратного рівняння: D = b 2 - 4 * a * c. Далі знаходиться два корені х 1,2 = (-b ± √D) / 2 * a.

При D> 0 рівняння має два корені, при D = 0 - один корінь. Але яке квадратне рівняння не має коріння? Поспостерігати кількість коренів квадратного рівняння найпростіше за графіком функції, що є параболою. При а > 0 гілки спрямовані нагору, при а< 0 ветви опущены вниз. Если дискриминант отрицателен, такое квадратное уравнение не имеет корней на множестве действительных чисел.

Також можна визначити візуально кількість коренів, не рахуючи дискримінант. Для цього потрібно знайти вершину параболи та визначити в який бік спрямовані гілки. Визначити координату x вершини можна за формулою: х0 = -b/2a. У цьому випадку координата y вершини знаходиться простою підстановкою значення х 0 початкове рівняння.

Квадратне рівняння x 2 - 8x + 72 = 0 не має коріння, оскільки має негативний дискримінант D = (-8) 2 - 4 * 1 * 72 = -224. Це означає, що парабола не стосується осі абсцис і функція ніколи не набуває значення 0, отже, рівняння не має дійсних коренів.

3. Тригонометричні рівняння

Тригонометричні функції розглядаються на тригонометричному колі, проте можуть бути представлені і в декартовій системі координат. У цій статті ми розглянемо дві основні тригонометричні функціїта їх рівняння: sinx та cosx. Оскільки ці функції утворюють тригонометричне коло з радіусом 1, |sinx| та |cosx| 1. Отже, яке рівняння sinx не має коріння? Розглянемо графік функції sinx, представлений на зображенні нижче.

Ми бачимо, що функція є симетричною та має період повторення 2pi. Виходячи з цього, можна говорити, що максимальним значенням цієї функції може бути 1, а мінімальним -1. Наприклад, вираз cosx = 5 не матиме коренів, тому що за модулем воно більше одиниці.

Це найпростіший приклад тригонометричних рівнянь. Насправді їхнє рішення може займати безліч сторінок, наприкінці яких ви усвідомлюєте, що використовували неправильну формулу і потрібно починати спочатку. Деколи навіть при правильному знаходженні коріння ви можете забути врахувати обмеження по ОДЗ, через що у відповіді з'являється зайвий корінь або інтервал, і вся відповідь звертається до помилкової. Тому суворо стежте за всіма обмеженнями, адже не все коріння вписується в рамки завдання.

4. Системи рівнянь

Система рівнянь є сукупністю рівнянь, об'єднаних фігурною або квадратною дужками. Фігурні дужки позначають спільне виконання всіх рівнянь. Тобто якщо хоча б одне із рівнянь не має коріння або суперечить іншому, вся система не має рішення. Квадратні дужки позначають слово "або". Це означає, що хоч одне з рівнянь системи має рішення, то вся система має рішення.

Відповіддю системи є сукупність всіх коренів окремих рівнянь. А системи з фігурними дужками мають лише загальне коріння. Системи рівнянь можуть містити абсолютно різноманітні функції, тому така складність не дозволяє сказати відразу, яке рівняння не має коріння.

У задачниках та підручниках зустрічаються різні типирівнянь: такі, що маю коріння, і не мають їх. Насамперед, якщо у вас не виходить знайти коріння, не думайте, що їх немає зовсім. Можливо, ви зробили де-небудь помилку, тоді досить лише уважно перевіряти ще раз ваше рішення.

Ми розглянули базові рівняння та їх види. Тепер ви можете сказати, яке рівняння не має коріння. Найчастіше зробити це дуже легко. Для досягнення успіху у вирішенні рівнянь потрібна лише увага та зосередженість. Практикуйтесь більше, це допоможе вам орієнтуватися в матеріалі набагато краще та швидше.

Отже, рівняння не має коріння, якщо:

  • у лінійному рівнянні mx = n значення m = 0 та n = 0;
  • у квадратному рівнянні, якщо дискримінант менший за нуль;
  • у тригонометричному рівнянні виду cosx = m / sinx = n, якщо | m | > 0, | n | > 0;
  • у системі рівнянь із фігурними дужками, якщо хоча б одне рівняння не має коріння, і з квадратними дужками, якщо всі рівняння не мають коріння.

Рівняння виду

Вираз D= b 2 - 4 acназивають дискримінантомквадратного рівняння. ЯкщоD = 0, то рівняння має один дійсний корінь; якщо D> 0, то рівняння має два дійсних кореня.
У випадку, коли D = 0 Іноді кажуть, що квадратне рівняння має два однакові корені.
Використовуючи позначення D= b 2 - 4 ac, можна переписати формулу (2) у вигляді

Якщо b= 2 k, то формула (2) набуває вигляду:

де k= b / 2 .
Остання формула особливо зручна у випадках, коли b / 2 - ціле число, тобто. коефіцієнт b- парне число.
Приклад 1:Розв'язати рівняння 2 x 2 - 5 x + 2 = 0 . Тут a = 2, b = -5, c = 2. Маємо D= b 2 - 4 ac = (-5) 2- 4*2*2 = 9 . Оскільки D > 0 , то рівняння має два корені. Знайдемо їх за формулою (2)

Отже x 1 = (5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
тобто x 1 = 2 і x 2 = 1 / 2 - Коріння заданого рівняння.
Приклад 2:Розв'язати рівняння 2 x 2 - 3 x + 5 = 0 . Тут a = 2, b = -3, c = 5. Знаходимо дискримінант D= b 2 - 4 ac = (-3) 2- 4*2*5 = -31 . Оскільки D 0 , то рівняння не має дійсних коренів.

Неповні квадратні рівняння. Якщо у квадратному рівнянні ax 2 + bx+ c =0 другий коефіцієнт bабо вільний член cдорівнює нулю, то квадратне рівняння називається неповним. Неповні рівняння виділяють тому, що для відшукання їх коріння можна не користуватися формулою коренів квадратного рівняння - простіше вирішити рівняння методом розкладання його лівої частини на множники.
Приклад 1:вирішити рівняння 2 x 2 - 5 x = 0 .
Маємо x(2 x - 5) = 0 . Значить або x = 0 , або 2 x - 5 = 0 , тобто x = 2.5 . Отже, рівняння має два корені: 0 і 2.5
Приклад 2:вирішити рівняння 3 x 2 - 27 = 0 .
Маємо 3 x 2 = 27 . Отже коріння даного рівняння - 3 і -3 .

Теорема Вієта. Якщо наведене квадратне рівняння x 2 + px+ q =0 має дійсне коріння, то їх сума дорівнює - p, а твір одно q, тобто

x 1 + x 2 = -p,
x 1 x 2 = q

(Сума коренів наведеного квадратного рівняння дорівнює другому коефіцієнту, взятому з протилежним знаком, а добуток коренів дорівнює вільному члену).

Квадратні рівняння. Дискримінант. Рішення, приклади.

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Види квадратних рівнянь

Що таке квадратне рівняння? Як воно виглядає? У терміні квадратне рівнянняключовим словом є "квадратне".Воно означає, що у рівнянні обов'язковоповинен бути присутнім ікс у квадраті. Крім нього, у рівнянні можуть бути (а можуть і не бути!) просто ікс (у першому ступені) і просто число (Вільний член).І не повинно бути іксів у мірі, більше двійки.

Говорячи математичною мовою, квадратне рівняння – це рівняння виду:

Тут a, b і с- Якісь числа. b та c- Зовсім будь-які, а а- Будь-яке, крім нуля. Наприклад:

Тут а =1; b = 3; c = -4

Тут а =2; b = -0,5; c = 2,2

Тут а =-3; b = 6; c = -18

Ну, ви зрозуміли…

У цих квадратних рівняннях зліва присутній повний набірчленів. Ікс у квадраті з коефіцієнтом а,ікс у першому ступені з коефіцієнтом bі вільний член с.

Такі квадратні рівняння називаються повними.

А якщо b= 0, що в нас вийде? У нас пропаде ікс у першому ступені.Від множення на нуль таке трапляється.) Виходить, наприклад:

5х 2 -25 = 0,

2х 2 -6х = 0,

-х 2+4х=0

І т.п. А якщо вже обидва коефіцієнти, bі cрівні нулю, то все ще простіше:

2х 2 = 0,

-0,3 х 2 = 0

Такі рівняння, де чогось не вистачає, називаються неповними квадратними рівняннями.Що цілком логічно.) Прошу помітити, що ікс у квадраті є у всіх рівняннях.

До речі, чому ане може дорівнювати нулю? А ви підставте замість анолик.) У нас зникне ікс у квадраті! Рівняння стане лінійним. І вирішується вже зовсім інакше.

Ось і всі основні види квадратних рівнянь. Повні та неповні.

Розв'язання квадратних рівнянь.

Розв'язання повних квадратних рівнянь.

Квадратні рівняння вирішуються просто. За формулами та точними нескладними правилами. На першому етапі треба задане рівняння призвести до стандартного вигляду, тобто. до вигляду:

Якщо рівняння вам дано вже в такому вигляді - перший етап робити не потрібно. Головне - правильно визначити всі коефіцієнти, а, bі c.

Формула для знаходження коріння квадратного рівняння виглядає так:

Вираз під знаком кореня називається дискримінант. Але про нього – нижче. Як бачимо, для знаходження ікса ми використовуємо тільки a, b і с. Тобто. коефіцієнти із квадратного рівняння. Просто акуратно підставляємо значення a, b і су цю формулу і рахуємо. Підставляємо зі своїми знаками! Наприклад, у рівнянні:

а =1; b = 3; c= -4. Ось і записуємо:

Приклад практично вирішено:

Це відповідь.

Все дуже просто. І що, думаєте, помилитись не можна? Ну так, як же…

Найпоширеніші помилки – плутанина зі знаками значень a, b і с. Точніше, не з їхніми знаками (де там плутатися?), а з підстановкою негативних значеньу формулу для обчислення коренів. Тут рятує докладний запис формули із конкретними числами. Якщо є проблеми з обчисленнями, так і робіть!

Припустимо, треба ось такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Допустимо, ви знаєте, що відповіді у вас рідко з першого разу виходять.

Ну і не лінуйтеся. Написати зайву строчку займе секунд 30. А кількість помилок різко скоротиться. Ось і пишемо докладно, з усіма дужками та знаками:

Це здається неймовірно важким, так старанно розписувати. Але це лише здається. Спробуйте. Ну, чи вибирайте. Що краще, швидко, чи правильно? Крім того, я вас порадую. Через деякий час зникне потреба так ретельно все розписувати. Саме правильно виходитиме. Особливо, якщо застосовуватимете практичні прийоми, що описані трохи нижче. Цей злий приклад з купою мінусів вирішиться просто і без помилок!

Але, часто, квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

Дізналися?) Так! Це неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь.

Їх також можна вирішувати за загальною формулою. Треба тільки правильно збагнути, чого тут дорівнюють a, b і с.

Зрозуміли? У першому прикладі a = 1; b = -4;а c? Його взагалі нема! Так, правильно. У математиці це означає, що c = 0 ! Ось і все. Підставляємо у формулу нуль замість c,і все в нас вийде. Аналогічно і з другим прикладом. Тільки нуль у нас тут не з, а b !

Але неповні квадратні рівняння можна вирішувати набагато простіше. Без жодних формул. Розглянемо перше неповне рівняння. Що там можна зробити у лівій частині? Можна ікс винести за дужки! Давайте винесемо.

І що з того? А те, що твір дорівнює нулю тоді, і тільки тоді, коли якийсь із множників дорівнює нулю! Чи не вірите? Добре, придумайте тоді два ненульові числа, які при перемноженні нуль дадуть!
Чи не виходить? Отож…
Отже, можна впевнено записати: х 1 = 0, х 2 = 4.

Все. Це і буде коріння нашого рівняння. Обидва підходять. При підстановці кожного з них у вихідне рівняння, ми отримаємо правильну тотожність 0 = 0. Як бачите, рішення набагато простіше, ніж за загальною формулою. Зауважу, до речі, який ікс буде першим, а яким другим абсолютно байдуже. Зручно записувати по порядку, х 1- те, що менше, а х 2- Те, що більше.

Друге рівняння також можна вирішити просто. Переносимо 9 у праву частину. Отримаємо:

Залишається корінь витягти з 9, і все. Вийде:

Теж два корені . х 1 = -3, х 2 = 3.

Так вирішуються усі неповні квадратні рівняння. Або з допомогою винесення икса за дужки, чи простим перенесенням числа вправо з наступним вилученням кореня.
Зплутати ці прийоми дуже складно. Просто тому, що в першому випадку вам доведеться корінь із іксу витягувати, що якось незрозуміло, а в другому випадку виносити за дужки нема чого…

Дискримінант. Формула дискримінанту.

Чарівне слово дискримінант ! Рідкісний старшокласник не чув цього слова! Фраза «вирішуємо через дискримінант» вселяє впевненість та обнадіює. Тому що чекати каверз від дискримінанта не доводиться! Він простий і безвідмовний у зверненні.) Нагадую найзагальнішу формулу для вирішення будь-якихквадратних рівнянь:

Вираз під знаком кореня називається дискримінантом. Зазвичай дискримінант позначається буквою D. Формула дискримінанта:

D = b 2 - 4ac

І чим же примітний цей вислів? Чому воно заслужило спеціальну назву? У чому сенс дискримінанта?Адже -b,або 2aу цій формулі спеціально ніяк не називають... Літери та літери.

Справа ось у чому. При розв'язанні квадратного рівняння за цією формулою, можливі лише три випадки.

1. Дискримінант позитивний.Це означає, що з нього можна витягти корінь. Добре корінь витягується, або погано – питання інше. Важливо, що в принципі. Тоді у вашого квадратного рівняння – два корені. Два різні рішення.

2. Дискримінант дорівнює нулю.Тоді у вас буде одне рішення. Так як від додавання-віднімання нуля в чисельнику нічого не змінюється. Строго кажучи, це не один корінь, а два однакові. Але, у спрощеному варіанті, прийнято говорити про одному рішенні.

3. Дискримінант негативний.З негативного числа квадратний корінь не витягується. Ну і добре. Це означає, що рішень немає.

Чесно кажучи, при простому рішенніквадратних рівнянь, поняття дискримінанта не особливо й потрібне. Підставляємо на формулу значення коефіцієнтів, і вважаємо. Там все само собою виходить, і два корені, і одне, і жодне. Однак, при вирішенні більше складних завдань, без знання змісту та формули дискримінантане обійтися. Особливо – в рівняннях із параметрами. Такі рівняння - вищий пілотаж на ДІА та ЄДІ!)

Отже, як вирішувати квадратні рівняннячерез дискримінант ви згадали. Або навчилися, що теж непогано.) Умієте правильно визначати a, b і с. Вмієте уважнопідставляти їх у формулу коренів та уважнорахувати результат. Ви зрозуміли, що ключове словотут – уважно?

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок. Тих самих, що через неуважність. За які потім буває боляче і прикро.

Прийом перший . Не лінуйтеся перед вирішенням квадратного рівняння привести його до стандартного вигляду. Що це означає?
Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

І знову не кидайтесь! Мінус перед іксом у квадраті може дуже вас засмутити. Забути його легко… Позбавтеся мінуса. Як? Та як навчали у попередній темі! Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад. Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий. Перевіряйте коріння! За теоремою Вієта. Не лякайтеся, я все поясню! Перевіряємо останнєрівняння. Тобто. те, яким ми записували формулу коренів. Якщо (як у цьому прикладі) коефіцієнт а = 1, перевірити коріння легко. Достатньо їх перемножити. Має вийти вільний член, тобто. у разі -2. Зверніть увагу не 2, а -2! Вільний член зі своїм знаком . Якщо не вийшло – значить уже десь накосячили. Шукайте помилку.

Якщо вийшло – треба скласти коріння. Остання та остаточна перевірка. Повинен вийти коефіцієнт bз протилежним знаком. У разі -1+2 = +1. А коефіцієнт b, що перед іксом, дорівнює -1. Значить, все правильно!
Жаль, що це так просто тільки для прикладів, де ікс у квадраті чистий, з коефіцієнтом а = 1.Але хоч у таких рівняннях перевіряйте! Все менше помилокбуде.

Прийом третій . Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Домножте рівняння на спільний знаменник, як описано в уроці "Як розв'язувати рівняння? Тотожні перетворення". При роботі з дробами помилки чомусь так і лізуть.

До речі, я обіцяв злий приклад із купою мінусів спростити. Будь ласка! Ось він.

Щоб не плутатися в мінусах, примножуємо рівняння на -1. Отримуємо:

Ось і все! Вирішувати – одне задоволення!

Отже, підсумуємо тему.

Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього рівняння на -1.

3. Якщо коефіцієнти дробові – ліквідуємо дроби множенням всього рівняння на відповідний множник.

4. Якщо ікс у квадраті – чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити за теоремою Вієта. Робіть це!

Тепер можна і вирішити.)

Розв'язати рівняння:

8х 2 - 6x + 1 = 0

х 2 + 3x + 8 = 0

х 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Відповіді (безладно):

х 1 = 0
х 2 = 5

х 1,2 =2

х 1 = 2
х 2 = -0,5

х - будь-яке число

х 1 = -3
х 2 = 3

рішень немає

х 1 = 0,25
х 2 = 0,5

Все сходиться? Чудово! Квадратні рівняння – не ваша головний біль. Перші три вийшли, а решта – ні? Тоді проблема не у квадратних рівняннях. Проблема у тотожних перетвореннях рівнянь. Прогуляйтеся посиланням, це корисно.

Чи не зовсім виходить? Чи зовсім не виходить? Тоді вам допоможе Розділ 555. Там усі ці приклади розібрані по кісточках. Показано головніпомилки у вирішенні. Розповідається, зрозуміло, і застосування тотожних перетворень у вирішенні різних рівнянь. Дуже допомагає!

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

», тобто рівняння першого ступеня. У цьому уроці ми розберемо, що називають квадратним рівняннямта як його вирішувати.

Що називають квадратним рівнянням

Важливо!

Ступінь рівняння визначають найбільшою мірою, в якій стоїть невідоме.

Якщо максимальний ступінь, у якому стоїть невідоме — «2», значить перед вами квадратне рівняння.

Приклади квадратних рівнянь

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25 x = 0
  • x 2 − 8 = 0

Важливо! Загальний вигляд квадратного рівняння виглядає так:

A x 2 + b x + c = 0

"a", "b" і "c" - задані числа.
  • "a" - перший або старший коефіцієнт;
  • "b" - другий коефіцієнт;
  • "c" - вільний член.

Щоб знайти «a», «b» та «c» потрібно порівняти своє рівняння із загальним виглядом квадратного рівняння «ax 2 + bx + c = 0».

Давайте потренуємося визначати коефіцієнти «a», «b» та «c» у квадратних рівняннях.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Рівняння Коефіцієнти
  • a = 5
  • b = −14
  • з = 17
  • a = −7
  • b = −13
  • з = 8
1
3
= 0
  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25 x = 0
  • a = 1
  • b = 0,25
  • з = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • з = −8

Як вирішувати квадратні рівняння

На відміну від лінійних рівнянь для розв'язання квадратних рівнянь використовується спеціальна формула для знаходження коріння.

Запам'ятайте!

Щоб розв'язати квадратне рівняння потрібно:

  • привести квадратне рівняння до загального вигляду"ax 2 + bx + c = 0". Тобто у правій частині має залишитися лише «0»;
  • використовувати формулу для коріння:

Давайте на прикладі розберемо, як застосовувати формулу для знаходження коріння квадратного рівняння. Вирішимо квадратне рівняння.

X 2 − 3x − 4 = 0


Рівняння x 2 − 3x − 4 = 0 вже приведено до загального вигляду ax 2 + bx + c = 0 і не вимагає додаткових спрощень. Для його вирішення нам достатньо застосувати формулу знаходження коріння квадратного рівняння.

Визначимо коефіцієнти «a», «b» та «c» для цього рівняння.


x 1; 2 =
x 1; 2 =
x 1; 2 =
x 1; 2 =

З її допомогою вирішується будь-яке квадратне рівняння.

У формулі «x 1;2 = » часто замінюють підкорене вираз
"b 2 - 4ac" на букву "D" і називають дискримінантом. Докладніше поняття дискримінанта у в уроці «Що таке дискримінант ».

Розглянемо інший приклад квадратного рівняння.

x 2 + 9 + x = 7x

У цьому вигляді визначити коефіцієнти «a», «b» та «c» досить складно. Давайте спочатку наведемо рівняння до загального вигляду "ax 2 + bx + c = 0".

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Тепер можна використати формулу для коріння.

X 1; 2 =
x 1; 2 =
x 1; 2 =
x 1; 2 =
x =

6
2

x = 3
Відповідь: x = 3

Трапляються випадки, коли в квадратних рівняннях немає коріння. Така ситуація виникає, як у формулі під коренем виявляється негативне число.