Факторами роста для бактерий могут быть. Ростовые факторы бактерий


100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Бактериальные факторы роста - необходимые для жизнедеятельности бактериальной клетки органические вещества, которые она не способна синтезировать самостоятельно и должна получать в готовом виде. Бактериальные факторы роста - соединения различной химической природы; большинство из них относится к водорастворимым витаминам группы В; функции Б. ф. р. несут также гемин, холин, пуриновые и пиримидиновые основания и многие аминокислоты. Отсутствие в среде Б. ф. р. приводит к бактериостатическому эффекту - который в ряде случаев сопровождается цитологическими изменениями. Бактериальные факторы роста не служат для микробной клетки пластическими или энергетическими материалами и используются бактериями в ничтожных количествах в неизмененном виде. Некоторые факторы в качестве активных групп (коферментов) входят в структуру различных клеточных энзимов.

К важнейшим бактериальным факторам роста относятся: тиамин (витамин B1) - составная часть некоторых коферментов, играющих важную роль в углеводном обмене; рибофлавин (витамин В2)-участвует в окислительно-восстановительных процессах; пантотеновая кислота - участвует в построении ферментных систем бактериальной клетки, в частности кофермента А; пиридоксин (витамин В6) - производные этого фактора роста играют важную роль в обмене аминокислот; витамин В12 - входит в состав активной группы ферментов, участвующих в реакциях синтеза нуклеотидов; фолиевая кислота - в виде одного из своих производных входит в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот; аминокислоты - служат компонентами клеточных белков; некоторые из них выполняют и биокаталитические функции.

Потребность бактерий в различных бактериальных факторы роста разнообразна: у большинства сапрофитов она сводится к минимуму, тогда как патогенные микробы (возбудители бруцеллеза, дифтерии, туляремии и др.) могут расти только на синтетических средах, содержащих многие аминокислоты и другие вещества.

Азотфикса́ция, или азотофиксация - фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве.

Различают три типа азотфиксации:

  • Свободноживущими бактериями самых разнообразных таксономических групп.
  • Ассоциативная азотфиксация бактериями, находящимися в тесной связи с растениями (в прикорневой зоне или на поверхности листьев) и использующие их выделения (корневые выделения составляют до 30 % продукции фотосинтеза) как источник органического вещества. Азотфиксаторы живут в кишечнике многих животных (жвачные, грызуны, термиты) и человека (род Escherichia).
  • Симбиотическая. Наиболее известен симбиоз клубеньковых бактерий (сем. Rhizobiaceae) с бобовыми растениями. Обычно происходит корневое заражение, но известны растения, образующие клубеньки на стеблях и листьях.

Созданы бактериальные удобрения (например, нитрагин) для инокуляции (заражения) штаммами клубеньковых бактерий семян бобовых культур, что увеличивает их урожайность. Также для стимулирования процессов азотфиксации полезно вносить в почву небольшие «стартовые» дозы азотных удобрений, в то время как большие их дозы подавляют процесс.

  • 1.Медицинская микробиология. Предмет, задачи, методы, связь с другими науками. Значение медицинской микробиологии в практической деятельности врача.
  • 3. Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.
  • 6. Рост и размножение бактерий. Фазы размножения.
  • 7.Питание бактерий. Типы и механизмы питания бактерий. Аутотрофы и гетеротрофы. Факторы роста. Прототрофы и ауксотрофы.
  • 8.Питательные среды. Искусственные питательные среды: простые, сложные, общего назначения, элективные, дифференциально-диагностические.
  • 9. Бактериологический метод изучения микроорганизмов. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий. Характер роста микроорганизмов на жидких и плотных питательных средах.
  • 13. Спирохеты, их морфология и биологические свойства. Патогенные для человека виды.
  • 14. Риккетсии, их морфология и биологические свойства. Роль риккетсий в инфекционной патологии.
  • 15. Морфология и ультраструктура микоплазм. Виды, патогенные для человека.
  • 16. Хламидии, морфология и другие биологические свойства. Роль в патологии.
  • 17. Грибы, их морфология и особенности биологии. Принципы систематики. Заболевания, вызываемые грибами у человека.
  • 20. Взаимодействие вируса с клеткой. Фазы жизненного цикла. Понятие о персистенции вирусов и персистентных инфекциях.
  • 21. Принципы и методы лабораторной диагностики вирусных инфекций. Методы культивирования вирусов.
  • 24. Строение генома бактерий. Подвижные генетические элементы, их роль в эволюции бактерий. Понятие о генотипе и фенотипе. Виды изменчивости: фенотипическая и генотипическая.
  • 25. Плазмиды бактерий, их функции и свойства. Использование плазмид в генной инженерии.
  • 26. Генетические рекомбинации: трансформация, трансдукция, конъюгация.
  • 27. Генная инженерия. Использование методов генной инженерии для получения диагностических, профилактических и лечебных препаратов.
  • 28.Распространение микробов в природе. Микрофлора почвы, воды, воздуха, методы ее изучения. Характеристика санитарно-показательных микроорганизмов.
  • 29. Нормальная микрофлора тела человека, ее роль в физиологических процессах и патологии. Понятие о дисбактериозе. Препараты для восстановления нормальной микрофлоры: эубиотики (пробиотики).
  • 31. Формы проявления инфекции. Персистенция бактерий и вирусов. Понятие о рецидиве, реинфекции, суперинфекции.
  • 32. Динамика развития инфекционного процесса, его периоды.
  • 33. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность. Единицы измерения вирулентности. Понятие о факторах патогенности.
  • 34. Классификация факторов патогенности по о.В. Бухарину. Характеристика факторов патогенности.
  • 35. Понятие об иммунитете. Виды иммунитета.
  • 36. Неспецифические защитные факторы организма против инфекции. Роль и.И. Мечникова в формировании клеточной теории иммунитета.
  • 37. Антигены: определение, основные свойства. Антигены бактериальной клетки. Практическое использование антигенов бактерий.
  • 38. Структура и функции иммунной системы. Кооперация иммунокомпетентных клеток. Формы иммунного ответа.
  • 39. Иммуноглобулины, их молекулярная структура и свойства. Классы иммуноглобулинов. Первичный и вторичный иммунный ответ. :
  • 40. Классификация гиперчувствительности по Джейлу и Кумбсу. Стадии аллергической реакции.
  • 41. Гиперчувствительность немедленного типа. Механизмы возникновения, клиническая значимость.
  • 42. Анафилактический шок и сывороточная болезнь. Причины возникновения. Механизм. Их предупреждение.
  • 43. Гиперчувствительность замедленного типа. Кожно-аллергические пробы и их использование в диагностике некоторых инфекционных заболеваний.
  • 44. Особенности противовирусного, противогрибкового, противоопухолевого, трансплантационного иммунитета.
  • 45. Понятие о клинической иммунологии. Иммунный статус человека и факторы, влияющие на него. Оценка иммунного статуса: основные показатели и методы их определения.
  • 46. Первичные и вторичные иммунодефициты.
  • 47. Взаимодействие антигена с антителом in vitro. Теория сетевых структур.
  • 48. Реакция агглютинации. Компоненты, механизм, способы постановки. Применение.
  • 49. Реакция Кумбса. Механизм. Компоненты. Применение.
  • 50. Реакция пассивной гемагглютинации. Механизм. Компоненты. Применение.
  • 51. Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.
  • 53. Реакция связывания комплемента. Механизм. Компоненты. Применение.
  • 54. Реакция нейтрализации токсина антитоксином, нейтрализации вирусов в культуре клеток и в организме лабораторных животных. Механизм. Компоненты. Способы постановки. Применение.
  • 55. Реакция иммунофлюоресценции. Механизм. Компоненты. Применение.
  • 56. Иммуноферментный анализ. Иммуноблотинг. Механизмы. Компоненты. Применение.
  • 57. Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к вакцинным препаратам.
  • 59. Вакцинопрофилактика. Вакцины из убитых бактерий и вирусов. Принципы приготовления. Примеры убитых вакцин. Ассоциированные вакцины. Преимущества и недостатки убитых вакцин.
  • 60. Молекулярные вакцины: анатоксины. Получение. Использование анатоксинов для профилактики инфекционных заболеваний. Примеры вакцин.
  • 61. Генно-инженерные вакцины. Получение. Применение. Преимущества и недостатки.
  • 62. Вакцинотерапия. Понятие о лечебных вакцинах. Получение. Применение. Механизм действия.
  • 63. Диагностические антигенные препараты: диагностикумы, аллергены, токсины. Получение. Применение.
  • 64. Сыворотки. Определение. Современная классификация сывороток. Требования, предъявляемые к сывороточным препаратам.
  • 65. Антительные препараты – сыворотки, применяемые для лечения и профилактики инфекционных заболеваний. Способы получения. Осложнения при применении и их предупреждение.
  • 66. Антительные препараты – сыворотки, применяемые для диагностики инфекционных заболеваний. Способы получения. Применение.
  • 67. Понятие об иммуномодуляторах. Принцип действия. Применение.
  • 68. Интерфероны. Природа, способы получения. Применение. № 99 Интерфероны. Природа, способы получения. Применение.
  • 69. Химиотерапевтические препараты. Понятие о химиотерапевтическом индексе. Основные группы химиотерапевтических препаратов, механизм их антибактериального действия.
  • 71. Лекарственная устойчивость микроорганизмов и механизм ее возникновения. Понятие о госпитальных штаммах микроорганизмов. Пути преодоления лекарственной устойчивости.
  • 72. Методы микробиологической диагностики инфекционных болезней.
  • 73. Возбудители брюшного тифа и паратифов. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 74. Возбудители эшерихиозов. Таксономия. Характеристика. Роль кишечной палочки в норме и патологии. Микробиологическая диагностика эшерихиозов.
  • 75. Возбудители шигеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 76. Возбудители сальмонеллезов. Таксономия. Характеристи­ка. Микробиологический диагноз сальмонеллезов. Лечение.
  • 77. Возбудители холеры. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 78.Стафилококки. Таксономия. Характеристика. Микроби­ологическая диагностика заболеваний, вызываемых ста­филококками. Специфическая профилактика и лечение.
  • 79. Стрептококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 80. Менингококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 81. Гонококки. Таксономия. Характеристика. Микробио­логическая диагностика гонореи. Лечение.
  • 82. Возбудитель туляремии. Таксономия. Характеристи­ка. Микробиологическая диагностика. Специфическая про­филактика и лечение.
  • 83. Возбудитель сибирской язвы. Таксономия и характе­ристика. Микробиологическая диагностика. Специфичес­кая профилактика и лечение.
  • 84. Возбудитель бруцеллеза. Таксономия и характерис­тика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 85. Возбудитель чумы. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 86. Возбудители анаэробной газовой инфекции. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 87. Возбудители ботулизма. Таксономия и характеристика Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 88. Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.
  • 89. Неспорообразующие анаэробы. Таксономия. Характе­ристика. Микробиологическая диагностика и лечение.
  • 90. Возбудитель дифтерии. Таксономия и характеристика. Условно – патогенные коринебактерии. Микробиологическая диагностика. Выявления анатоксического иммунитета. Специфическая профилактика и лечение.
  • 91. Возбудители коклюша и паракоклюша. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 92. Возбудители туберкулеза. Таксономия и характеристика. Условно – патогенные микобактерии. Микробиологическая диагностика туберкулеза.
  • 93. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.
  • 95. Возбудитель хламидиозов. Таксономия. Характеристи­ка. Микробиологическая диагностика. Лечение.
  • 96.Возбудитель сифилиса. Таксономия. Характеристика. Микробиологическая диагностика. Лечение.
  • 97. Возбудитель лептоспирозов. Таксономия. Характери­стика. Микробиологическая диагностика. Специфическая профилактика. Лечение.
  • 98. Возбудитель боррелиозов. Таксономия. Характерис­тика. Микробиологическая диагностика.
  • 99. Клиническая микробиология, ее задачи. Вби, особенности причины возникновления.Роль условно – патогенных микроорганизмов в возникновении внутрибольничных инфекций.
  • 100. Классификация грибов. Характеристика. Роль в патологии. Лабораторная диагностика. Лечение.
  • 101. Классификация микозов. Поверхностные и глубокие микозы. Дрожжеподобные грибы рода кандида. Роль в патологии человека.
  • 102. Возбудитель гриппа. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилакти­ка и лечение.
  • 103. Возбудитель полиомиелита. Таксономия и характери­стика. Лабораторная диагностика. Специфическая про­филактика.
  • 104. Возбудители гепатитов а и е. Таксономия. Характе­ристика. Лабораторная диагностика. Специфическая про­филактика.
  • 105. Возбудитель клещевого энцефалита. Таксономия. Ха­рактеристика. Лабораторная диагностика. Специфичес­кая профилактика.
  • 106. Возбудитель бешенства. Таксономия. Характеристи­ка. Лабораторная диагностика. Специфическая профи­лактика.
  • 107. Возбудитель краснухи. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилак­тика.

7.Питание бактерий. Типы и механизмы питания бактерий. Аутотрофы и гетеротрофы. Факторы роста. Прототрофы и ауксотрофы.

В зависимости от способности усваивать органические или не­органические источники углерода и азота микроорганизмы делятся на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают уг­лерод из углекислоты (СО 2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

В зависимости от источников энергии и природы доноров микроорганизмы подразделяют нафототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно – восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.

В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).

В зависимости от источников азота – прототрофы – микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, АК и др.) из глюкозы и солей аммония.Ауксотрофы – микроорганизмы, не способные синтезировать какое – либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспорти­руются внутрь клетки.

Проникновение питательных веществ в клетку происходит с по­мощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диф­фузии по градиенту концентрации, то есть вследствие того, что кон­центрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту кон­центрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внеш­ней стороне цитоплазматической мембраны и отдает его на внутрен­ней стороне в неизмененном виде. Затем свободный переносчик пере­мещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышаю­щих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи ве­ществ. Это активный перенос химически измененных молекул, с учас­тием пермеаз. Например, такое простое вещество, как глюкоза, пере­носится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пас­сивной диффузии или путем облегченной диффузии с участием пермеаз.

Факторы роста микроорганизмов:

К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды. Потреб­ность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который использует­ся для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехно­логических целей.

Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или несколь­ких), поскольку они не могут их самостоятельно синтезировать, например клостридии - в лейцине, тирозине, стрептококки - в лейцине, аргинине и др. Такого рода микроорганизмы называют­ся ауксотрофными по тем аминокислотам или другим соедине­ниям, которые они не способны синтезировать.

Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факто­рами роста для разных видов стрептококков, некоторые азотис­тые основания нужны для роста стафилококков и других бакте­рий. В нуклеотидах нуждаются некоторые виды микоплазм.

Липиды, в частности компоненты фосфолипидов - жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим сте-ринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.

Витамины, главным образом группы В, входят в состав ко-ферментов или их простетических групп. Многие бактерии аук­сотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы - тиамине (ВО, входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка - в пантотеновой кислоте, являющейся составной частью кофермента КоА и т. д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы - компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.

21. Питание бактерий. Типы питания. Механизмы переноса веществ в клетку. Факторы роста микроорганизмов.

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов - анаболизма, или конструктивного метаболизма, и катаболизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

    Быстрота и интенсивность обменных процессов. За сутки микробная клетка может переработать такое количество питательных веществ, которое превышает ее собственный вес в 30-40 раз.

    Выраженная приспособляемость к изменяющимся условиям внешней среды.

    Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно наличие в среде обитания питательных материалов для построения компонентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, натрия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микробов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или неорганические источники углерода и азота микроорганизмы делятся на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают углерод из углекислоты (СО 2 ) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

В зависимости от источников энергии и природы доноров микроорганизмы подразделяют на фототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно – восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.

В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).

В зависимости от источников азота – прототрофы – микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, АК и др.) из глюкозы и солей аммония. Ауксотрофы – микроорганизмы, не способные синтезировать какое – либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспортируются внутрь клетки.

Проникновение питательных веществ в клетку происходит с помощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диффузии по градиенту концентрации, то есть вследствие того, что концентрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту концентрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внешней стороне цитоплазматической мембраны и отдает его на внутренней стороне в неизмененном виде. Затем свободный переносчик перемещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышающих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи веществ. Это активный перенос химически измененных молекул, с участием пермеаз. Например, такое простое вещество, как глюкоза, переносится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пассивной диффузии или путем облегченной диффузии с участием пермеаз.

Факторы роста микроорганизмов:

К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды. Потребность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который используется для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехнологических целей.

Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать, например клостридии - в лейцине, тирозине, стрептококки - в лейцине, аргинине и др. Такого рода микроорганизмы называются ауксотрофными по тем аминокислотам или другим соединениям, которые они не способны синтезировать.

Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факторами роста для разных видов стрептококков, некоторые азотистые основания нужны для роста стафилококков и других бактерий. В нуклеотидах нуждаются некоторые виды микоплазм.

Липиды, в частности компоненты фосфолипидов - жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим сте-ринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.

Витамины, главным образом группы В, входят в состав ко-ферментов или их простетических групп. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы - тиамине (ВО, входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка - в пантотеновой кислоте, являющейся составной частью кофермента КоА и т. д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы - компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.

Биологическое окисление (энергетический метаболизм)

Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последовательном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ.

Окислению подвергаются углеводы, спирты, органические кислоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза.

У микроорганизмов существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением.

Начальный этап анаэробного расщепления глюкозы с образованием пировиноградной кислоты (ПВК) происходит одинаково. Эта

кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с образованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образуется в результате брожений. При спиртовом брожении ПВК превращается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну молекулу глюкозы образуется только 2 молекулы АТФ.

Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он также установил явление, которое впоследствии было названо "эффектом Пастера": прекращение процесса брожения при широком доступе кислорода.

Анаэробиоз существует только среди прокариотов. Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободного кислорода. К ним можно отнести микобактерии туберкулеза, холерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при отсутствии доступа кислорода. Они имеют неполный набор окислительно-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО 2 и Н 2 О. Более того, в присутствии свободного кислорода образуются токсические соединения: перекись водорода Н 2 О 2 и свободный перекисный радикал кислорода О 2 . Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом.

К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии.

Большинство патогенных бактерий - факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор ферментов и при широком доступе кислорода окисляют глюкозу до конечных продуктов; при низком содержании кислорода они вызывают брожение.

Микроаэрофилы размножаются в присутствии небольших количеств кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.

Рост и размножение микроорганизмов

Термином "рост" обозначают увеличение размеров отдельной особи, а "размножение" - увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стенки и цитоплазматической мембраны образуется перегородка, врастающая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.

Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну материнскую нить и одну вновь образованную.

Быстрота размножения разных видов бактерий различна. Большинство бактерий делятся каждые 15-30 минут. Микобактерии туберкулеза делятся медленно - одно деление за 18 часов, спирохеты - одно деление за 10 часов.

Если посеять бактерии в жидкую питательную среду определенного объема и затем каждый час брать пробу и определять количество живых бактерий в такой замкнутой среде и составить график, на котором по оси абсцисс откладывать время в часах, а по оси ординат логарифм количества живых бактерий, то получим кривую роста бактерий. Рост бактерий подразделяют на несколько фаз (рис. 5):

    латентная фаза (лаг-фаза) - бактерии адаптируются к питательной среде, количество их не увеличивается;

    фаза логарифмического роста - количество бактерий увеличивается в геометрической прогрессии;

    фаза стационарного роста, во время которой число вновь образованных бактерий уравнивается числом погибших, и количество живых бактерий остается постоянным, достигая максимального уровня. Это М-концентрация - величина, характерная для каждого вида бактерий;

    фаза отмирания, когда число отмирающих клеток начинает преобладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

Культура бактерий в такой замкнутой несменяющейся среде называется периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное культивирование применяют в микробиологической промышленности.

Оглавление темы "Перенос веществ в бактериальной клетке. Питательные субстраты бактерий. Энергетический метаболизм бактерий.":
1. Активный перенос веществ в бактериальной клетке. Транспорт веществ обусловленный фосфорилированием. Выделение веществ из бактериальной клетки.
2. Фермент. Ферменты бактерий. Регуляторные (аллостерические) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.
3. Питательные субстраты бактерий. Углерод. Аутотрофия. Гетеротрофия. Азот. Использование неорганического азота. Ассимиляционные процессы в клетке.
4. Диссимиляционные процессы. Использование органического азота в клетке. Аммонификация органических соединений.
5. Фосфор. Сера. Кислород. Облигатные (строгие) аэробы. Облигатные (строгие) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.

7. Энергетический метаболизм бактерий. Схема идентификации неизвестной бактерии. Экзэргонические реакции.
8. Синтез (регенерация) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза. Световая и темновая фаза фотосинтеза.
9. Получение энергии при окислении химических соединений. Бактерии хемотрофы. Получение энергии субстратным фосфорилированием. Брожение.
10. Спиртовое брожение. Гомоферментативное молочнокислое брожение. Гетероферментативное брожение. Муравьинокислое брожение.

Некоторые бактерии (особенно прихотливые или мутанты с наследственными дефектами) могут расти только в среде, дополненной определёнными компонентами, которые сами микроорганизмы синтезировать не могут. Эти компоненты известны как ростовые факторы, а подобные бактерии называют ауксотрофами [от лат. аихiliит, помощь, + греч. trophe, питание]. Если ауксотрофия возникает в результате мутации, то «дикий», или основной тип, не нуждающийся в определённом факторе роста, называют прототрофным .

Основные ростовые факторы - витамины, пурины и пиримидины. Наиболее важны для бактерий водорастворимые витамины, принимающие участие в функционировании большого количества ферментов в качестве коэнзимов. Потребность бактерий в этих продуктах очень мала (например, рост стафилококков обеспечивает внесение 0,003 мг тиамина и 0,2 мг никотиновой кислоты на 1 л среды), то есть факторы роста не используются в качестве пластического или энергетического материала, но обеспечивают регуляцию метаболизма.

Классификация факторов стимулирующих рост бактерий

Факторы, стимулирующие рост бактерий , разделяют на три категории.

Вещества, присутствие которых обязательно для роста бактерий . Это может быть определённая аминокислота, например гистидин, для штамма Salmonella thyphimurium his- (гистидин-отрицательный), ауксотрофного по гистидину, либо набор витаминов (лактофлавин, тиамин, биотин, фолиеван и пантотеновая кислота) и аминокислот, без которых нельзя вырастить молочнокислые бактерии.

Факторы, отсутствие которых не вызывает полной остановки роста культуры . Обычно это определённые витамины, входящие в состав простетических групп ферментов и необходимые в очень малых количествах.

Факторы, синтезируемые самими микроорганизмами и добавление которых в среду ускоряет рост , но это условие не обязательно (например, в синтетическую среду культивирования Escherichia coli можно добавить дрожжевой автолизат для интенсификации роста, но и на простой минеральной среде с глюкозой бактерия будет расти).

Пусковые факторы роста бактерии

Пусковые факторы роста выделяют в особую категорию. Они имеют существенное значение для начала роста культуры. Позднее клетки культуры синтезируют все необходимые для их роста продукты самостоятельно. В качестве примера можно привести необходимость следовых количеств гистидина для роста ревертантов Salmonella his- и их обратной мутации в his+ (гистидинположительный). Хотя прототрофы his+ не нуждаются в факторах роста, деление исходного ауксотрофа his-, необходимое для закрепления обратной мутации, может протекать только в присутствии гистидина.

Для того чтобы культура микроорганизмов могла нормально расти, размножаться и осуществлять биосинтез какого-либо вещества, необходимо соблюдать оптимальные параметры окружающей среды. При неблагоприятных условиях изменяются свойства микроорганизмов, подавляется их жизнедеятельность или происходит гибель. Различают три кардинальные точки , которые определяют развитие микроорганизмов:

- минимум __ жизнедеятельность культуры только начинается;

- максимум __ жизнедеятельность уже прекращается;

- оптимум __ жизнедеятельность проявляется с наибольшей интенсивностью.

На рост и развитие микроорганизмов влияют физические, химические и биологические факторы.

Физические __ температура, влажность среды, концентрация питательных веществ.

Температура . Каждая группа микроорганизмов развивается в определенных температурных пределах. По отношению к оптимальной температуре развития все микроорганизмы делят на три группы: психрофилы, мезофилы и термофилы.

Психрофилы __ минимальная температура развития от минус 7 до 0 °С; оптимальная 15-20 °С; максимальная 30-35 °С.

Мезофилы __ минимальная температура их развития 5-10 °С; оптимальная 25-35 °С; максимальная 40-50 °С. К этой группе относится большинство используемых в промышленности микроорганизмов, как культурных, так и вредных.

Термофилы __ минимальная температура развития не менее 30 °С; оптимальная 45-60 °С; максимальная 70-80 °С.

Температуры, превышающие максимальные, приводят к гибели микроорганизмов за счет тепловой коагуляции белков клетки и инактивации ферментов. При температуре 70°С большинство вегетативных форм микроорганизмов гибнет за 1-5 мин.

Температуры ниже минимальных гибель микроорганизмов не вызывают, а только приостанавливают их жизнедеятельность.

Влажность среды . Нормальное функционирование клетки (обмен веществ, рост и размножение) возможно только тогда, когда в ней содержится достаточное количество влаги и сама клетка погружена в водную среду с растворенными в ней питательными веществами.

Бактерии развиваются при минимальной влажности субстрата 25-30 %, грибы и дрожжи __ 10-15 %, а иногда и 6-7 %.

При снижении влажности уменьшается интенсивность биохимических реакций и, следовательно, жизненных процессов. От влажности среды зависит устойчивость микроорганизмов к высоким температурам. В среде с повышенной влажностью гибель их происходит быстрее, чем в воздушной среде.

Концентрация питательных веществ . Влияние этого фактора на жизнедеятельность микроорганизмов связано с явлением осмоса.

Осмос __ перенос веществ через полупроницаемую перегородку (в частности, через цитоплазматическую мембрану клетки). Осуществляется благодаря разнице осмотических давлений, которые создаются растворенными веществами, по обе стороны перегородки. Вода движется со стороны меньшего осмотического давления в сторону большего, растворенные вещества __ наоборот. Этим объясняется проникновение вещества в клетку даже при очень малой его концентрации в среде.

Высокие концентрации любых питательных веществ создают высокое осмотическое давление во внешней среде, которое значительно превышает осмотическое давление внутри клетки. Вода при этом выходит из клетки наружу, в результате чего она обезвоживается, протоплазма отделяется от стенки. Это явление называется плазмолиз.

Если среда сильно разбавлена (имеет низкое осмотическое давление), то вода из среды поступает в клетку, она набухает и такое состояние называется плазмоптисом . В конечном счете, клетка может разорваться.

Плазмолиз и плазмоптис при определенных условиях являются обратимыми процессами.

Для обеспечения нормального поступления питательных веществ в клетку, необходимо поддерживать ее в состоянии тургора , когда осмотическое давление в среде чуть меньше осмотического давления внутри клетки. В этом случае вода, проникая в клетку, создает определенное напряжение клеточной оболочки, и протоплазма оказывается прижатой к внутренней стенке.

Содержимое клетки по осмотическому давлению эквивалентно 10-20 %-му раствору сахарозы.

Минимальной для активного обмена веществ является приблизительно 0,5 %-ная концентрация сахара или соли в воде. Некоторые микроорганизмы могут сохранять свою жизнедеятельность в концентрированных растворах (с высоким осмотическим давлением). Такие микроорганизмы называются осмофильными .

К химическим факторам , которые влияют на жизнедеятельность микроорганизмов, относятся: рН среды, окислительно-восстановительный потенциал (гН 2) и присутствие в среде токсичных веществ.

рН среды . Выражает степень кислотности или щелочности среды. Колебания рН могут вызвать изменение активности ферментов, обмена веществ. Например, в кислой среде дрожжи образуют этиловый спирт, в щелочной - глицерин.

Каждая группа микроорганизмов существует в определенном интервале рН. Дрожжи и плесневые грибы хорошо развиваются в слабокислой среде (рН 4-6), бактерии __ в нейтральной или слабощелочной (рН 6,5-7,5).

Окислительно-восстановительные условия среды . Большое значение для жизнедеятельности микроорганизмов имеет кислород. Для некоторых микроорганизмов он жизненно необходим, для других является ядом. Окислительно-восстановительный потенциал выражается редокс-потенциалом (гН 2) __ _ отрицательным логарифмом концентрации молекулярного водорода, который характеризует степень окисленности (аэробности) или восстановленности (анаэробности) среды. гН 2 лежит в пределах от 0 до 41. В водном растворе, насыщенном кислородом, гН 2 равен 41, а в условиях насыщения водородом гН 2 равен 0.

По отношению к редокс-потенциалу микроорганизмы подразделяют на:

облигатные аэробы - живут только в присутствии кислорода и получают энергию за счет дыхания;

облигатные анаэробы - микроорганизмы, которые растут в среде, лишенной кислорода, так как он для них токсичен. Получают энергию за счет брожения (окислительно-восстановительных процессов, которые протекают без участия кислорода воздуха);

факультативные анаэробы и аэробы могут жить как при доступе, так и в отсутствие кислорода, переходя с дыхания на брожение.

Для облигатных аэробов гН 2 находится в пределах 14-30, для облигатных анаэробов гН 2 __ 0-14, для факультативных анаэробов гН 2 от 0 до 20.

Действие химических веществ . Многие вещества замедляют и подавляют действие микроорганизмов. К ним относятся: спирты, фенолы, альдегиды (особенно формальдегид), нитраты, пестициды, кислоты (бензойная, сернистая, сорбиновая, борная, фтористоводородная), щелочи, соли тяжелых металлов (ртути, меди, серебра), окислители (KМnО 4 ,J,C1, Н 2 О 2), газы (сернистый, диоксид углерода). Эффективность действия их на микроорганизмы зависит от химической природы, применяемой концентрации, условий среды (рН, температуры) и вида микроорганизмов. Как правило, высокие дозы этих веществ оказывают летальное действие, а малые дозы в некоторых случаях могут даже являться стимуляторами роста микроорганизмов.

Симбиоз __ два или более вида организма совместно развиваются лучше, чем по отдельности (например, бобовые растения и клубеньковые бактерии; молочнокислые бактерии и дрожжи в производстве кваса).

Метабиоз __ жизнедеятельность одного организма способствует развитию другого (например, продукты обмена одного микроорганизма являются источником питания для другого).

Антагонизм __ один вид организма угнетает или вызывает гибель другого за счет быстрого размножения или выделения в среду метаболитов (например, антибиотиков, микотоксинов).