Применение моделирования в биологии. Математическая биология


Мы уже говорили о том, что математический подход к изучению тех или иных явлений реального мира начинается обычно с создания соответствующих общих понятий, т. е. с построения математических моделей, обладающих существенными для нас свойствами тех систем и процессов, которые мы изучаем. Мы упоминали и о тех трудностях, с которыми Связано построение таких моделей в биологии, трудностях, обусловленных чрезвычайной сложностью биологических систем. Однако, несмотря на эти трудности, "модельный" подход к биологическим проблемам сейчас успешно развивается и уже принес определенные результаты. Мы рассмотрим некоторые модели, относящиеся к различным биологическим процессам и системам.

Говоря о роли моделей в биологических исследованиях, важно заметить следующее. Хотя термин «модель» мы понимаем в абстрактном смысле - как некоторую систему логических понятий, а не как реальное физическое устройство, все же модель - это нечто существенно большее, чем простое описание явления или чисто качественная гипотеза, в которых еще остается достаточно места для разного рода неясностей и субъективных мнений. Напомним следующий пример, относящийся к довольно далекому прошлому. В свое время Гельмгольц, занимаясь изучением слуха, выдвинул так называемую резонансную теорию, выглядевшую правдоподобно с чисто качественной стороны. Однако проведенные позже количественные расчеты, учитывающие реальные значения масс, упругости и вязкости составляющих слуховую систему компонент, показали несостоятельность этой гипотезы. Иначе говоря, попытка превратить чисто качественную гипотезу в точную модель, допускающую ее исследование математическими методами, сразу же обнаружила несостоятельность исходных принципов. Конечно, если мы построили некоторую модель и даже получили хорошее согласие между этой моделью и результатами соответствующего биологического эксперимента, то это еще не доказывает правильности нашей модели. Вот если мы на основании изучения нашей модели сможем сделать какие-то предсказания о той биологической системе, которую мы моделируем, а затем подтвердим эти предсказания реальным экспериментом, то это будет гораздо более ценным свидетельством в пользу правильности модели.

Но перейдем к конкретным примерам.

2.Кровообращение

Одной из первых, если не самой первой, работой по математическому моделированию биологических процессов следует считать работу Леонарда Эйлера, в которой он развил математическую теорию кровообращения, рассматривая в первом приближении всю кровеносную систему как состоящую из резервуара с упругими стенками, периферического сопротивления и насоса. Эти идеи Эйлера (как и некоторые другие его работы) были сперва основательно забыты, а затем возрождены в более поздних работах других авторов.

3. Законы Менделя

Достаточно давняя и хорошо известная, но тем не менее весьма замечательная модель в биологии - это менделевская теория наследственности. Эта модель, основанная на теоретико-вероятностных понятиях, состоит в том, что в хромосомах родительских клеток заложены определенные наборы признаков, которые при оплодотворении комбинируются между собой независимо и случайно. В дальнейшем эта основная идея подверглась весьма существенным уточнениям; так, например, было обнаружено, что разные признаки не всегда независимы друг от друга; если они связаны с одной и той же хромосомой, то они могут передаваться лишь в определенной комбинации. Далее, обнаружилось, что и разные хромосомы комбинируются не независимо, а имеет место свойство, названное сродством хромосом, нарушающее эту независимость и т. д. В настоящее время теоретико-вероятностные и статистические методы весьма широко проникли в генетические исследования и даже термин «математическая генетика» получил полные права гражданства. Сейчас в этой области ведется интенсивная работа, получено много результатов, интересных как с биологической, так и с чисто математической точки зрения. Однако в самой основе этих исследований лежит та модель, которая была создана Менделем более 100 лет назад.

4. Модели мышцы

Одним из интереснейших объектов физиологического исследования является мышца. Этот объект весьма доступен, и многие исследования экспериментатор может проделать просто на себе, располагая лишь сравнительно несложным оборудованием. Достаточно ясны и определенны и те функции, которые выполняет мышца в живом организме. Несмотря на все это, многочисленные попытки построить удовлетворительную модель работы мышцы не дали окончательных результатов. Ясно, что хотя мышца может растягиваться и сокращаться, подобно пружине, их свойства совершенно различны, и даже в самом первом приближении пружину нельзя рассматривать как подобие мышцы. Для пружины существует строгая зависимость между ее удлинением и приложенной к ней нагрузкой. Для мышцы это не так: мышца может менять свою длину, сохраняя натяжение, и наоборот, менять силу тяги, не изменяя длины. Проще говоря, при одной и той же длине мышца может быть расслаблена, а может быть напряжена.

Среди различных режимов работы, возможных для мышцы, наиболее существенны так называемое изотоническое сокращение (т. е. сокращение, при котором напряжение мышцы остается постоянным) и изометрическое напряжение, при котором не меняется длина мышцы (оба ее конца неподвижно закреплены). Исследование мышцы в этих режимах важно для понимания принципов ее работы, хотя в естественных условиях активность мышцы не бывает ни чисто изотонической, ни чисто изометрической.

Для описания соотношения между скоростью изотонического сокращения мышцы и величиной нагрузки были предложены различные математические формулы. Наиболее известная из них - так называемое характеристическое уравнение Хилла. Оно имеет вид

(P+a)V=b(P 0 -P) ,

- скорость сокращения, а, b и Р 0 - постоянные.

Другие хорошо известные формулы для описания этой же связи - это уравнение Обера

P = Р 0 e- V⁄P ±F

и уравнение Полиссара

V=const (А 1-P/P 0 - B 1-P/P 0) .

Уравнение Хилла получило широкое распространение в физиологии; оно дает достаточно хорошее совпадение с экспериментом для мышц самых разных животных, хотя на самом деле оно представляет собой результат «подбора», а не вывод из некоторой модели. Два других уравнения, дающих в довольно широком диапазоне нагрузок примерно ту же зависимость, что и уравнение Хилла, получены их авторами из определенных представлений о физико-химическом механизме мышечного сокращения. Существует ряд попыток построить модель работы мышцы, рассматривая последнюю как некоторую комбинацию упругих и вязких элементов. Однако до сих пор достаточно удовлетворительной модели, отражающей все основные черты работы мышцы в различных режимах, не существует.

5. Модели нейрона, нейронные сети

Нервные клетки, или нейроны, это те «рабочие единицы», из которых состоит нервная система и которым организм животного или человека обязан всеми своими способностями воспринимать внешние сигналы и управлять различными частями тела. Характерная черта нервных клеток состоит в том, что такая клетка может находиться в двух состояниях - покоя и возбуждения. В этом нервные клетки сходны с такими элементами, как радиолампы или полупроводниковые триггеры, из которых собираются логические схемы вычислительных машин. За последние 15-20 лет было предпринято много попыток моделировать деятельность нервной системы, исходя из тех же принципов, на которых основана работа универсальных вычислительных машин. Еще в 40-х годах американские исследователи Мак-Каллок и Питтс ввели понятие «формального нейрона», определив его как элемент (физическая природа которого не играет роли), снабженный некоторым количеством «возбуждающих» и некоторым количеством «тормозящих» входов. Сам этот элемент может находиться в двух состояниях - «покой» или «возбуждение». Возбужденное состояние наступает в том случае, если на нейрон пришло достаточное число возбуждающих сигналов и нет тормозящих сигналов. Мак-Каллок и Питтс показали, что с помощью схем, составленных из таких элементов, можно, в принципе, реализовать любой из типов обработки информации, происходящих в живом организме. Это, однако, вовсе не означает, что мы тем самым познали действительные принципы работы нервной системы. Прежде всего, хотя для нервных клеток характерен принцип «все или ничего», т. е. наличие двух четко выраженных состояний - покой и возбуждение, отсюда вовсе не следует, что наша нервная система, подобно универсальной вычислительной машине, пользуется двоичным цифровым кодом, состоящим из нулей и единиц. Например, в нервной системе существенную роль играет, видимо, частотная модуляция, т. е. передача информации с помощью длин временных интервалов между импульсами. Вообще в нервной системе нет, видимо, такого разделения способов кодирования информации на «цифровые» дискретные) и «аналоговые» (непрерывные), какое имеется в современной вычислительной технике.

Для того чтобы система нейронов работала как некоторое целое, необходимо, чтобы между этими нейронами были определенные связи: импульсы, генерируемые одним нейроном, должны поступать на входы других нейронов. Эти связи могут иметь правильную, регулярную структуру, а могут определяться лишь статистическими закономерностями и подвергаться тем или иным случайным изменениям. В существующих сейчас вычислительных устройствах никакой случайности в соединениях между элементами не допускается, однако имеется ряд теоретических исследований по поводу возможности построения вычислительных устройств, основанных на принципах случайных связей между элементами. Есть достаточно серьезные доводы в пользу того, что связи между реальными нейронами в нервной системе тоже носят в значительной мере статистический, а не строго регулярный характер. Однако мнения по этому поводу расходятся.

В целом, по поводу проблемы моделирования нервной системы можно сказать следующее. Мы уже довольно много внаем об особенностях работы нейронов, т. е. тех элементов, из которых состоит нервная система. Более того, с помощью систем формальных нейронов (понимаемых в смысле Мак- Каллока и Питтса или в каком-либо ином), имитирующих основные свойства реальных нервных клеток, можно моделировать, как уже говорилось, весьма разнообразные способы обработки информации. Тем не менее мы еще довольно далеки от четкого понимания основных принципов работы нервной системы и отдельных ее частей, а следовательно, и от создания ее удовлетворительной модели * .

* (Если мы можем создать какую-то систему, умеющую решать такие же задачи, что и какая-то другая система, то это еще не значит, что обе системы работают по одним и тем же принципам. Например, можно численно решать дифференциальное уравнение на цифровой вычислительной машине, задав ей соответствующую программу, а можно то же уравнение решать на аналоговой машине. Мы получим одинаковые или почти одинаковые результаты, но принципы обработки информации в этих двух типах машин совершенно различные. )

6. Восприятие зрительных образов. Цветное зрение

Зрение - один из основных каналов, по которому к нам поступают сведения о внешнем мире. Известное выражение - лучше один раз увидеть, чем сто раз услышать - справедливо, между прочим, и с чисто информационной точки зрения: количество информации, которое мы воспринимаем с помощью зрения, несравненно больше, чем воспринимаемое другими органами чувств. Эта важность зрительной системы для живого организма наряду с другими соображениями (специфичность функций, возможность проведения разнообразных исследований без каких-либо повреждений системы и т. д.) стимулировала ее изучение и, в частности, попытки модельного подхода к этой проблеме.

Глаз представляет собой орган, служащий одновременно и оптической системой и устройством для обработки информации. И с той и с другой точки зрения эта система обладает рядом удивительных свойств. Замечательна способность глаза приспосабливаться к очень широкому диапазону интенсивностей освещения и правильно воспринимать при этом все цвета. Например, находящийся в плохо освещенной комнате кусок мела отражает меньше света, чем кусок угля, вынесенный на яркий солнечный свет, тем не менее мы в каждом из этих случаев воспринимаем цвета соответствующих предметов правильно. Глаз хорошо передает относительные различия в интенсивностях освещения и даже их несколько «утрирует». Так, серая линия на ярко-белом фоне кажется нам более темной, чем сплошное поле того же серого цвета. Эта способность глаза подчеркивать контрасты освещенности связана с тем, что зрительные нейроны оказывают друг на друга тормозящее действие: если из двух соседних нейронов первый получает более сильный сигнал, чем второй, то он оказывает на второй интенсивное тормозящее действие, и на выходе этих нейронов разница в интенсивности получается больше, чем была разница в интенсивности входных сигналов. Модели, состоящие из формальных нейронов, соединенных между собой как возбуждающими, так и тормозящими связями, привлекают внимание как физиологов, так и математиков. Здесь имеются и интересные результаты и нерешенные вопросы.

Большой интерес представляет механизм восприятия глазом различных цветов. Как известно, все оттенки цветов, воспринимаемых нашим глазом, могут быть представлены как комбинации трех основных цветов. Обычно в качестве таких основных цветов берут красный, синий и желтый цвета, отвечающие длинам волн 700, 540 и 450 Å, но этот выбор не однозначен.

«Трехцветность» нашего зрения связана с тем, что в глазу человека имеются рецепторы трех типов, с максимумами чувствительности в желтой, синей и красной зонах соответственно. Вопрос о том, как мы с помощью этих трех рецепторов различаем большое количество цветовых оттенков, весьма не прост. Например, недостаточно ясно еще - чем именно кодируется тот или иной цвет в нашем глазу: частотой нервных импульсов, локализацией того нейрона, который преимущественно реагирует на данный оттенок цвета, или чем-либо еще. Существуют некоторые модельные представления об этом процессе восприятия оттенков, однако они еще носят довольно предварительный характер. Несомненно, впрочем, что и здесь существенную роль должны играть системы нейронов, соединенных между собой как возбуждающими, так и тормозящими связями.

Наконец, глаз весьма интересен и как кинематическая система. Рядом остроумных опытов (многие из них были выполнены в лаборатории физиологии зрения Института проблем передачи информации в Москве) был установлен следующий на первый взгляд неожиданный факт: если некоторое изображение неподвижно относительно глаза, то глаз его не воспринимает. Наш глаз, осматривая какой-либо предмет, буквально «ощупывает» его (эти движения глаза можно при помощи соответствующей аппаратуры точно зарегистрировать). Изучение двигательного аппарата глаза и разработка соответствующих модельных представлений достаточно интересны как сами по себе, так и в связи с другими (оптическими, информационными и т. п.) свойствами нашей зрительной системы.

Резюмируя, можно сказать, что мы еще далеки от создания вполне удовлетворительных моделей зрительной системы, хорошо описывающих все ее основные свойства. Однако ряд важных аспектов и (принципов ее работы уже достаточно ясен и может быть смоделирован в виде вычислительных программ для УЦВМ или даже в виде технических устройств.

7. Модель активной среды. Распространение возбуждения

Одно из весьма характерных свойств многих живых тканей, в первую очередь нервной ткани, это их способность к возбуждению и к передаче возбуждения от одних участков к соседним с ними. Примерно раз в секунду волна возбуждения пробегает по нашей сердечной мышце, заставляя ее сокращаться и гнать кровь по всему телу. По нервным волокнам возбуждение, распространяясь от периферии (органов чувств) к спинному и головному мозгу, информирует нас о внешнем мире, а в обратном направлении идут возбуждения-команды, предписывающие мышцам те или иные действия.

Возбуждение в нервной клетке может возникнуть само по себе (как говорят, «спонтанно»), под действием возбужденной соседней клетки или же под влиянием какого-либо внешнего сигнала, скажем, электрического раздражения, идущего от некоторого источника тока. Перейдя в возбужденное состояние, клетка пребывает в нем некоторое время, а затем возбуждение исчезает, после чего наступает определенный период невосприимчивости клетки к новым раздражениям - так называемый рефрактерный период. В течение этого периода клетка не реагирует на поступающие к ней сигналы. Затем клетка снова переходит в первоначальное состояние, из которого возможен переход в состояние возбуждения. Таким образом, возбуждение нервных клеток обладает рядом четко выраженных свойств, отправляясь от которых можно построить аксиоматическую модель этого явления. Далее для исследования этой модели могут быть применены чисто математические методы.

Представления о такой модели были развиты несколько лет тому назад в работах И. М. Гельфанда и М. Л. Цетлина, продолженных затем рядом других авторов. Сформулируем аксиоматическое описание модели, о которой идет речь.

Будем под «возбудимой средой» понимать некоторое множество X элементов («клеток»), обладающих следующими свойствами:

1.Каждый элемент может находиться в одном из трех состояний: покой, возбуждение и рефрактерность;

2.От каждого возбужденного элемента возбуждение распространяется по множеству элементов, находящихся в покое, с некоторой скоростью v ;

3.Если элемент х не был возбужден в течение некоторого определенного времени Т(х) , то по прошествии этого времени он самопроизвольно переходит в возбужденное состояние. Время Т(х) называется периодом спонтанной активности элемента х . При этом не исключается и тот случай, когда Т(х)= ∞ , т. е. когда спонтанная активность на самом деле отсутствует;

4.Состояние возбуждения длится некоторое время τ (которое может зависеть от х ), потом элемент переходит на время R(x) в рефрактерное состояние, после чего наступает состояние покоя.

Похожие математические модели возникают и в совсем других областях, например в теории горения, или в задачах о распространении света в неоднородной среде. Однако наличие «периода рефрактерности» является характерной чертой именно биологических процессов.

Описанную модель можно исследовать или аналитическими методами, или с помощью реализации ее на вычислительной машине. В последнем случае мы, понятно, вынуждены считать, что множество X (возбудимая среда) состоит из некоторого конечного числа элементов (в соответствии с возможностями существующей вычислительной техники - порядка нескольких тысяч). Для аналитического исследования естественно предполагать X некоторым непрерывным многообразием (например, считать, что X - это кусок плоскости). Простейший случай такой модели получается, если принять за X некоторый отрезок (прототип нервного волокна) и предположить, что время, в течение которого каждый элемент находится в возбужденном состоянии, очень мало. Тогда процесс последовательного распространения импульсов по такому «нервному волокну» может быть описан цепочкой обыкновенных дифференциальных уравнений первого порядка. Уже в этой упрощенной модели воспроизводится ряд особенностей процесса распространения, обнаруживаемых и в реальных биологических экспериментах.

Весьма интересен как с теоретической, так и с прикладной медицинской точки зрения вопрос об условиях возникновения в такой модельной активной среде так называемой фибрилляции. Это явление, наблюдаемое экспериментально, например на сердечной мышце, состоит в том, что вместо ритмических согласованных сокращений в сердце возникают беспорядочные локальные возбуждения, лишенные периодичности и нарушающие его функционирование. Впервые теоретическое исследование этой проблемы было предпринято в работе Н. Винера и А. Розенблюта в 50-х годах. В настоящее время работы в этом направлении интенсивно ведутся у нас и дали уже ряд интересных результатов.

Едва ли кто из биологов отрицает необходимость использования математических методов в биологических исследованиях, в частности для по пул яцио иного анализа. Однако в понимании того, какое место занимает математический анализ в биологии, существуют разные, иногда противоположные точки зрения. Одни считают, что важнейшая задача - это "познание поведения популяции как статистического агрегата" (Beverton a. Holt, 1957; Graham, 1956). Согласно этой точке зрения, задача биолога сводится к статистическому анализу и ограничивается установлением различных коррелятивных связей. Теоретической основой такой точки зрения служит высказывание Бертрана Рассела, что "биологические законы... подобно законам квантовой теории являются законами дискретными и статистическими" (Рассел, 1957, с. 69).

Другие исходят из того, что математический анализ в биологии, включая и популяционные исследования, необходим, но только как промежуточный, а не конечный этап исследования. Эта вторая точка зрения базируется на представлении о специфичности форм движения материи. В популяционном анализе это направление конечную задачу исследования видит в выявлении приспособительной сущности, познании причин биологического явления. С этих позиций мы и подходим к использованию математических моделей при изучении закономерностей динамики популяций.

Математическое моделирование - это метод, при помощи которого возможно выявить механизм процесса и понять его структурные особенности - установить параметры анализируемой совокупности. Математическое моделирование при наличии большого цифрового материала позволяет использовать счетно-решающие и моделирующие устройства для более быстрой и надежной обработки материала и для более разностороннего и объективного анализа собранных данных.

Очень важная задача, которая позволяет широко применять математические модели, - это разработка методики и составление прогнозов колебаний численности и возможных уловов промысловых рыб, а также расчет оптимальных режимов эксплуатации промысловых рыб, таких режимов, которые обеспечивали бы регулярное из года в год получение наибольшего количества рыбной продукции наиболее высокого качества. В настоящее время на выполнение этих задач, особенно на составление прогнозов возможных уловов отдельных промысловых рыб, расходуется огромное количество сил и времени, а результаты далеко не всегда оказываются достаточно точными. Поэтому крайне важно максимально упростить и механизировать процессы составления прогнозов и расчет режима эксплуатации стад промысловых рыб, обеспечив при этом высокую точность этих расчетов.

Использование в исследовательских целях быстродействующих электронных вычислительных машин позволяет значительно расширить объем исследований и подойти к разработке таких вопросов популяционной экологии, решение которых до появления ЭВМ было невозможным.

Метод математического моделирования

Широкое использование ЭВМ во всех областях исследований, включая ихтиологические, позволяет сильно их ускорить и достигнуть высокой точности получаемых результатов.

Однако, чтобы в популяционном анализе можно было использовать ЭВМ, необходимо составить программы, правильно отражающие ход интересующего нас процесса. Это в первую очередь совокупность правил и указаний для преобразования интересующих нас величин (алгоритм процесса), которая может включать зависимости как в виде уравнений, так и непосредственно в виде таблиц и графиков. Однако для получения "работающей" математической модели процесса необходимо, чтобы она была основана на тех причинных связях, на тех внутренних противоречиях, которые отражают действительную сущность развития биологического явления, а не на внешних случайных связях, подчиняющихся только статистическим закономерностям и не отражающих сущности явления. И естественно, что как у нас, так и за рубежом (Regier, 1970) при популяционном анализе все шире применяются модели, в основу которых положено представление о популяции как саморегулирующейся открытой системе, построенной по принципу обратных связей - плюс-минус взаимодействия.

Наличие в замкнутом контуре связей разного знака при определенных условиях обеспечивает относительную устойчивость системы (Меншуткин, 1971).

Под математической моделью я понимаю математическое выражение количественной стороны хода того или иного процесса или явления, в том числе динамики численности и биомассы популяций животных. Практически почти в каждом биологическом исследовании мы прямо или косвенно используем математические модели. Например, численное выражение среднего и амплитуды числа лучей в плавнике рыбы уже представляет собой простейшую математическую модель плавника. Применительно к математическим моделям динамики популяций, мне кажется, надо понимать уравнения или системы уравнений, которые отражают количественную сторону процесса динамики популяции и позволяют предвидеть дальнейший ход явления. Естественно, возникает вопрос, какое место в исследовании динамики популяций должно занимать математическое моделирование и как при помощи использования математических моделей способствовать успеху биологического исследования.

Процессы, .протекающие в органическом мире - те внутренние противоречия, которые движут развитие, носят в основном детерминированный характер и принадлежат как к группе процессов непрерывного действия с меняющейся интенсивностью (т. е. величиной и скоростью), так и к группе дискретных процессов. Это - процессы, определяющие ход явления. Но любое природное явление - это сложное переплетение внутренних и внешних противоречий; последние как бы создают ту обстановку, в которой протекает явление. Если процессы, отражающие внутреннее противоречие живого, относятся к категории детерминированных процессов дискретнего или непрерывного действия, то внешние воздействия носят, как правило, дискретный характер и не связаны с популяцией четкой обратной связью. Приступая к построению математической модели популяции, необходимо все это учитывать.

Как известно (Никольский, 1959), пользуясь математическим методом, можно выявить механизм протекания явления, но не вскрыть его приспособительную сущность. Однако знание механизма биологического явления для познания его сущности совершенно необходимо, и если метод математического моделирования может способствовать выяснению механизма хода явления - в нашем случае механизма динамики популяции, - то он должен быть максимально использован.

Варли (Varley, 1962), выступая в дискуссии по применимости математических моделей при популяционных исследованиях, изобразил место математической модели в популяционном исследовании следующим образом:

Однако теоретическая модель может быть использована в практических целях только после того, как она будет проверена на определении ее параметров в природе и превратится из теоретической модели в рабочую. Собственно теоретическая модель в понимании Варли - это скорее не математическая модель, отражающая ход явления, а рабочая гипотеза, основанная на предварительных биологических наблюдениях, которая дает возможность организовать исследование для определения исходных параметров. Последние позволяют создать уже рабочую модель пригодную для предсказания количественной стороны хода явления, т. е. "теоретическая модель" Варли - это те биологические принципы, которые должны быть положены в основу рабочей модели.

Ближе к процессу использования ЭВМ и математических моделей в разработке проблемы динамики популяций подходит схема, предложенная Д. И. Блохинцевым (1964) для работы современного физика: 1) измерение (набор фактов); 2) обработка полученной информации (на ЭВМ); 3) выводы (построение рабочих гипотез); 4) проверка их на счетных машинах; 5) построение теорий (предсказание на будущее).

Мне думается, что измерению (подбору фактов) также должна предшествовать гипотеза, основанная на общей методологии.

В этом отношении более правильно, как предлагает Д. Н. Хорафас (1967), начинать исследование с применением моделей и ЭВМ с постановки задачи. Этот автор предлагает следующую очередность операций: 1) определение задачи; 2) нахождение основных переменных величин; 3) определение соотношений между этими переменными и параметрами системы; 4) формулировка гипотезы относительно характера изучаемых условий; 5) построение математической или какой-либо иной модели; 6) проведение или планирование экспериментов; 7) проверка гипотезы; 8) оценка гипотезы в зависимости от исхода экспериментов; 9) принятие или отклонение гипотезы и формулировка выводов; 10) прогнозирование дальнейшего развития систем с учетом их взаимодействия; 11) выработка образа действия; 12) переход к этапу уточнения модели, выполнение необходимых корректив.

Схема Д. Н. Хорафаса, как мне представляется, близка к схеме, предлагаемой Д. И. Блохинцевым, но она вносит ряд уточнений, которые могут оказаться полезными и при популяционном анализе.

Таким образом, при исследованиях в области динамики популяций математическое моделирование должно обеспечивать более четкое представление о ходе процесса, главным образом о его количественной стороне. Математическое моделирование должно упростить процесс долгосрочного прогнозирования динамики популяций и, наконец, гарантировать надежный расчет режима эксплуатации популяций - режима, обеспечивающего наибольшую продуктивность популяции. Практическая задача, поставленная перед биологами и математиками в области построения математических моделей, - это создание такой модели, которая позволила бы автоматизировать службу долгосрочных прогнозов и использовать при расчетах оптимальных режимов эксплуатации промысловых животных вычислительную технику.

Мне представляется следующим ход биологического исследования динамики популяции и место в нем математического моделирования. На основе осмысливания имеющегося фактического материала создается рабочая гипотеза явления; на базе этой рабочей гипотезы строится программа исследования, обеспечивающая получение материалов, вскрывающих как причины, так и механизм хода явления. Эти материалы должны обеспечивать и возможность построения математической модели хода явления. Таким образом, в создании математической модели есть два этапа. Первый (теоретическая модель в схеме Варли) - рабочая гипотеза на основе собранных фактов оформляется в виде уравнения той или иной сложности; к этого рода моделям принадлежит подавляющее большинство математических моделей. Второй этап - на основе проверки рабочей гипотезы создается рабочая модель, пригодная для практических расчетов в прогностических и эксплуатационных целях. В основе как теоретической, так и рабочей моделей всегда лежит тот или иной комплекс теоретических представлений, и чем ближе эти теоретические представления к закономерностям, действующим в природе, тем правильнее и эффективнее будет созданная математическая модель.

ЛЕКЦИЯ 1
ВВЕДЕНИЕ. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В БИОЛОГИИ

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитацуионного моделирования и примеры моделей. Специфика моделирования живых систем.

Компьютеры в современном мире стали привычными для человеческой деятельности: в финансовой сфере, в бизнесе, промышленности, образовании, сфере досуга. Благодаря компьютерам западной цивилизации удалось существенно продвинуться в следующих направлениях.

  • Автоматизация трудовой деятельности во всех сферах
  • Информационная революция. Возможность хранить и структурировать огромные и самые разнообразные массивы информации и производить быстрый и эффективный поиск необходимой информации.
  • Прогнозирование. Компьютер позволяет строить имитационные модели сложных систем, проигрывать сценарии и делать прогнозы.
  • Оптимизация. Любая человеческая деятельность, в том числе обыденная жизнь требует постоянной оптимизации действий. В процессе эволюции сформировались биологические системы, которые оказываются оптимальными в том или ином смысле, например, в смысле наиболее экономичного использования энергии. Для того чтобы формализовать целевую функцию, то есть ответить на вопрос, что же является для системы оптимальным, необходимо сформулировать модель оптимизируемого процесса и критерии оптимизации. Компьютер позволяет проектировать и реализовать различные алгоритмы оптимизации.

Компьютер работает не с самой системой, а с моделью. Что же такое МОДЕЛЬ?

Наиболее простой и общий ответ на этот вопрос: модель — это копия объекта, в некотором смысле «более удобная», допускающая манипуляции в пространстве и во времени.

При моделировании, выборе и формулировке модели, определяющими обстоятельствами являются объект, цель и метод (средства) моделирования.
В нашем курсе объектами моделирования будут биологические процессы разного уровня организации.

Методами моделирования служат методы динамической теории систем. Средства — дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, компьютерная симуляция.

Цели моделирования:

  1. Выяснение механизмов взаимодействия элементов системы
  2. Идентификация и верификация параметров модели по экспериментальным данным.
  3. Оценка устойчивости системы (модели). Само понятие устойчивости требует формализации.
  4. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
  5. Оптимальное управление системой в соответствии с выбранным критерием оптимальности.

Примеры моделей.
1. Портрет дамы.

Пусть некто заказывает художнику написать портрет любимой женщины. Рассмотрим объект, метод (средства) и цель моделирования.
Объектом моделирования является женщина.

Метод (средства) — краски, кисти, холст. Эмаль, если портрет будет сделан на медальоне, как это было принято в прошлые века. Фотоаппарат и пленка. Рекламный щит, если некто хочет, чтобы его даму видели все, кто проезжает по оживленной магистрали. Обложка журнала, или экран телевизора. Наконец, сам художник, фотограф или рекламное агентство в лице своих дизайнеров.

Цель. При моделировании целью, как правило, является манипуляция с пространством и временем. Сохранить облик дамы во времени. Повесить портрет в гостиной, или медальон с изображением любимой — на шею, как это делали в старину. Чтобы потомки восхищались красотой дамы и своим пращуром, которому удалось запечатлеть такую красоту.
Другая цель — воспроизведение изображения (модели) объекта с целью сделать модель доступной некоторому кругу людей. Или многократно тиражировать, если некто хочет, чтобы образ дамы увидели миллионы.

2. Самолет в аэродинамической трубе. Помещая самолет в аэродинамическую трубу и испытывая его в различных воздушных потоках, мы решаем задачу взаимодействия системы с внешней средой. Это еще одна очень важная цель моделирования. При этом в корпусе самолета не обязательно должны находиться кресла, и тем более, стюардессы. Какие из свойств объекта необходимо учесть, а какие можно опустить, степень подробности воспроизведения моделью объекта, определяется теми вопросами, на которые хотят ответить с помощью модели.

3. Аквариум является примером физического моделирования. В аквариуме можно моделировать водную экосистему — речную, озерную, морскую, заселить ее некоторыми видами фито- и зоопланктона, рыбами, поддерживать определенный состав воды, температуру, даже течения. И строго контролировать условия эксперимента. Какие компоненты естественной системы будут воспроизведены, и с какой точностью, зависит от цели моделирования.

4. Выделенные из листьев хлоропласты. На выделенных системах часто изучают процессы, происходящие в живой системе, в этом смысле фрагмент является моделью целой живой системы. Выделение более простой системы позволяет исследовать механизмы процессов на молекулярном уровне. При этом исключается регуляция со стороны более высоких уровней организации, в данном случае, со стороны растительной клетки, листа, наконец, целого растения. В большинстве случаев наблюдать процессы на молекулярном уровне в нативной (ненарушенной) системе не представляется возможным. Говорят, что изученные на выделенном хлоропласте первичные процессы фотосинтеза являются моделью первичных процессов фотосинтеза в живом листе. К сожалению, этот метод фрагментирования приводит к тому, что «…живой ковер жизни распускается по ниточкам, каждая ниточка досконально изучается, но волшебный рисунок жизни оказывается утрачен» (лауреат Нобелевской премии по биохимии Л. Поллинг).

5. Бислойная липидная мембрана. Еще «более модельным» примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной липидной мембране. Понятно, что в реальных биологических объектах мембраны чаще всего не бислойные, а многослойные, содержат встроенные белки и другие компоненты, поверхность их не является плоской и обладает множеством других индивидуальных особенностей. Однако, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки или органеллы, необходимо создать «чистую», «модельную» систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

6. Популяция дрозофилы , является классическим объектом моделирования микроэволюционного процесса и примером исключительно удачно найденной модели. Еще более удобной моделью являются вирусы, которые можно размножать в пробирке. Хотя не вполне ясно, справедливы ли эволюционные закономерности, установленные на вирусах, для законов эволюции высших животных. В лекции 11 мы увидим, что хорошей моделью микроэволюционных процессов являются также микробные популяции в проточном культиваторе.
Из приведенных примеров видно, что любая физическая модель обладает конкретными свойствами физического объекта. В этом ее преимущества, но в этом и ее ограничения.

Компьютерные модели содержат «знания» об объекте в виде математических формул, таблиц, графиков, баз данных и знаний. Они позволяют изучать поведение системы при изменении внутренних характеристик и внешних условий, проигрывать сценарии, решать задачу оптимизации. Однако каждая компьютерная реализация соответствует конкретным, заданным параметрам системы. Наиболее общими и абстрактными являются математические модели.

Математические модели описывают целый класс процессов или явлений, которые обладают сходными свойствами, или являются изоморфными. Наука конца 20 века — синергетика, показала, что сходными уравнениями описываются процессы самоорганизации самой разной природы: от образования скоплений галактик до образования пятен планктона в океане.

Если удается сформулировать «хорошую» математическую модель, для ее исследования можно применить весь арсенал науки, накопленный за тысячелетия. Недаром многие классики независимо высказывали одну и ту же мудрую мысль:

«Область знания становится наукой, когда она выражает свои законы в виде математических соотношений»

С этой точки зрения самая «научная» наука? физика. Она использует математику в качестве своего естественного языка. Все физические законы выражаются в виде математических формул или уравнений.

В химию математика пришла в тридцатые годы 20 века вместе с химической кинетикой и физической химией. Сейчас книги по химии, в особенности по химической кинетике, физической химии, квантовой химии полны математическими символами и уравнениями.

Чем более сложными являются объекты и процессы, которыми занимается наука, тем труднее найти математические абстракции, подходящие для описания этих объектов и процессов. В биологию, геологию и другие «описательные науки» математика пришла по настоящему только во второй половине 20 века.

Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Эта область математической биологии и в дальнейшем служила математическим полигоном, на котором «отрабатывались» математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.

Самая первая известная модель, сформулированная в биологической постановке, ? знаменитый ряд Фибоначчи, который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел:

5, 8, 13, 21, 34, 55, 89,….,

Риc1.1. Ряд Фибоначчи

Следующая известная истории модель — модель Мальтуса (1798), описывающая размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию:

Здесь r — коэффициент, аналогичный коэффициенту q в дискретной модели — константа собственной скорости роста популяции, отражающая ее генетический потенциал.

На этих простейших моделях видно, насколько примитивны математические модели по сравнению с биологическими объектами, каждый из которых, к примеру, популяция, ? это совокупность сложно организованных индивидуальных особей? организмов. В свою очередь каждый организм состоит из органов, тканей и клеток, осуществляет процессы метаболизма, двигается, рождается, растет, размножается, стареет и умирает. И каждая живая клетка? сложная гетерогенная система, объем которой разграничен мембранами и содержит субклеточные органеллы, и так далее, вплоть до биомакромолекул, аминокислот и полипептидов. На всех уровнях живой материи мы встречаем сложную пространственно-временную организацию, гетерогенность, индивидуальность, подвижность, потоки массы, энергии и информации.

Ясно, что для таких систем любая математика дает лишь грубое упрощенное описание. Дело существенно продвинулось с использованием компьютеров, которые позволяют имитировать достаточно сложные системы, однако и здесь, как правило, речь идет именно о моделях, т.е. о некоторых идеальных копиях живых систем, отражающих лишь некоторые их свойства, причем схематически.

Сейчас биологические журналы полны математическими формулами и результатами компьютерных симуляций. Имеются специальные журналы, посвященные работам в области математических моделей: Theoretical Biology; Biosystems; Mathematical Ecology, Mathematical biology, Biological systems etc. Работы по математическому моделированию печатаются практически во всех российских биологических журналах: Общая биология, Биофизика, Экология, Молекулярная биология, Физиология растений и других.

В основном, модели являются инструментом изучения конкретных систем, и работы по моделированию печатают в журналах, посвященных той области биологии, к которой относится объект моделирования. Это означает, что модель должна быть интересна, полезна и понятна специалистам-биологам. В то же время она должна быть, естественно, профессионально сделана с точки зрения математики.

Наиболее успешные модели сделаны в содружестве специалистов математиков, или физиков, и биологов, хорошо знающих объект моделирования. При этом наиболее трудная часть совместной работы? это формализация знаний об объекте (как правило, в виде схемы) на языке, который может затем быть переформулирован в математическую или компьютерную модель.

Условно все математические модели биологических систем можно разделить на регрессионные, качественные и имитационные.
Регрессионные зависимости? это формулы, описывающие связь различных характеристик системы, не претендуя на физический или биологический смысл этих зависимостей. Для построения регрессионной модели достаточно статистически достоверных наблюденных корреляций между переменными или параметрами системы.

ПРИМЕРЫ
1. Зависимость между количеством производителей хамсы S и количеством молоди от каждого нерестившегося производителя в Азовском море
(используется в большой имитационной модели динамики рыбного стада Азовского моря, Горстко, 1985):

Y поглощение кислорода, измеренное в мкл(0,25 г)-1ч-1.
D — число дней, в течение которых выдерживались образцы,
B — процентное содержание влаги в образцах,
Т — температура, измеренная в град.С.

Эта формула дает несмещенные оценки для скорости поглощения кислорода во всем диапазоне дней, температур и влажностей, которые наблюдались в эксперименте, со средним квадратичным отклонением в поглощении кислорода, равном s =0.319±0.321.

Коэффициенты в регрессионных моделях обычно определяются с помощью процедур идентификации параметров моделей по экспериментальным данным. При этом чаще всего минимизируется сумма квадратов отклонений теоретической кривой от экспериментальной для всех точек измерений. Т.е. коэффициенты модели подбираются таким образом, чтобы минимизировать функционал:

Здесь i ? номер точки измерения,
xe ? ‘экспериментальные значения переменных,
хt ? теоретические значения переменных,
a1, a2… ? параметры, подлежащие оценке,
wi ? «вес» i-го измерения,
N ? число точек измерения.

Имитационные модели (simulation)
По меткому выражению Р. Шеннона (1978) имитационное моделирование? это нечто промежуточное между искусством и наукой, направление, появление которого целиком обязано бурному росту возможностей вычислительной техники.

Суть имитационного моделирования заключается в исследовании сложной математической модели с помощью вычислительных экспериментов и обработки результатов этих экспериментов. При этом, как правило, создатели имитационной модели пытаются максимально использовать всю имеющуюся информацию об объекте моделирования, как количественную, так и качественную.

Грубо говоря, процесс построения имитационной модели можно представить следующим образом. Мы записываем в любом доступном для компьютера формализованном виде (в виде уравнений, графиков, логических соотношений, вероятностных законов) все, что знаем о системе, а потом проигрываем на компьютере варианты того, что может дать совокупность этих знаний при тех или иных значениях внешних и внутренних параметров системы.
Если вопросы, задаваемые нами модели, относятся не к выяснению фундаментальных законов и причин, определяющих динамику реальной системы, а к бихевиористскому (поведенческому) анализу системы, как правило, выполняемому в практических целях, имитационная модель оказывается исключительно полезной.

Особенно привлекательным оказалось применение имитационных моделей для описания экологических систем — необычайно сложных образований, включающих множество биологических, геологических, метеорологических и прочих факторов. Благодаря возможности проигрывать различные «сценарии» поведения и управления имитационная модель может быть успешно использована для выбора оптимальной стратегии эксплуатации природной экосистемы или оптимального способа создания искусственной экосистемы.

При создании имитационной модели можно позволить себе высокую степень подробности при выборе переменных и параметров модели. При этом модель может получиться разной у различных авторов, поскольку точные формальные правила ее построения отсутствуют. Результаты машинных экспериментов зависят не только от заложенных в модели соотношений, но и от организации комплекса реализующих в модель программ, и от механизма проведения машинных экспериментов. Поэтому воплощением идеи имитационного моделирования следует считать систему человек — машина, обеспечивающую проведение имитационных экспериментов в режиме диалога между лицом, проводящим эксперимент, и «машиной», т.е. комплексом программ.
Основные этапы построения имитационной модели следующие.

Формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотели бы получить. В соответствии с задачами моделирования задается вектор состояния системы. Вводится системное время, моделирующее ход времени в реальной системе. Временной шаг модели также определяется целями моделирования.

Производится декомпозиция системы на отдельные блоки, связанные друг с другом, но обладающие относительной независимостью. Для каждого блока определяют, какие компоненты вектора состояния должны преобразовываться в процессе его функционирования.

Формулируют законы и гипотезы, определяющие поведение отдельных блоков и связь этих блоков друг с другом. Для каждого блока множество законов функционирования дополняется множеством логических операторов, формализующих опыт наблюдения за динамикой процессов в. системе. При необходимости вводится «внутреннее системное время» данного блока модели, позволяющее моделировать более быстрые или более медленные процессы. Если в блоке используются случайные параметры, задаются правила отыскания на каждом шаге некоторых их реализаций. Разрабатываются программы, соответствующие отдельным блокам.
Каждый блок верифицируется по фактическим данным, и при этом его информационные связи с другими блоками «замораживаются». Обычно последовательность действий при верификации блоков такова: часть имеющейся информации используется для оценки параметров модели, а затем по оставшейся части информации сравнением расчетных данных с фактическими проверяется адекватность модели.\

Производится объединение разработанных блоков имитационной модели на базе стандартного или специально созданного математического обеспечения. Апробируются и отрабатываются различные схемы взаимодействия блоков. На этом этапе всю «большую модель» удобно рассматривать как комплекс автоматов с памятью или без нее, детерминированных или стохастических. Работа с моделью тогда представляет собой изучение коллективного поведения автоматов в случайной или детерминированной среде.

Производятся верификация имитационной модели в целом и проверка ее адекватности. Этот процесс еще менее может быть формализован, чем верификация отдельных блоков. Здесь решающими оказываются знания экспертов — специалистов, хорошо знающих реальную систему.

Планируются эксперименты с моделью. При анализе их результатов используются статистическая обработка информации, графические формы выдачи данных и пр. Результаты экспериментов пополняют информационный фонд (банк данных) и используются при дальнейшей работе с моделью.

На каждом из этапов могут возникнуть трудности, для преодоления которых необходимо перестраивать модель, расширять список фазовых переменных, уточнять вид их взаимодействий. По существу, создание имитационной модели включает путь последовательных приближений, в процессе которых получается новая информация об объекте моделирования, усовершенствуется система наблюдений, проверяются гипотезы о механизмах тех или иных процессов в рамках общей имитационной системы.

Таким образом, основные задачи имитационного моделирования:

  1. проверка гипотез о взаимодействии отдельных элементов и подсистем;
  2. прогноз поведения при изменении внутренних характеристик и внешних условий;
  3. оптимизация управления.

Ясно, что разработка имитационной модели сложной системы и работа с этой моделью требуют усилий целого коллектива специалистов, как в области машинной математики, так и в предметной области.

К настоящему времени в литературе имеются тысячи имитационных моделей биологических систем самого разного уровня, многие модели представлены в ИНТЕРНЕТ.

ПРИМЕРЫ
Молекулярная динамика.

Основные принципы построения моделей и результаты молекулярной динамики представлены на сайте www.biophys.ru/ Информационная система Российская биофизика. Биофизическое образование.

На протяжении всей истории западной науки стоял вопрос о том, можно ли, зная координаты всех атомов и законы их взаимодействия, описать все процессы, происходящие во Вселенной. Вопрос не нашел своего однозначного ответа. Квантовая механика утвердила понятие неопределенности на микроуровне. В лекциях 10-12 мы увидим, что существование квазистохастических типов поведения в детерминированных системах делает практически невозможным предсказание поведения некоторых детерминированных систем и на макроуровне.

Следствием первого вопроса является второй: вопрос «сводимости». Можно ли, зная законы физики, т.е. законы движения всех атомов, входящих в состав биологических систем, и законы их взаимодействия, описать поведение живых систем. В принципе, на этот вопрос можно ответить с помощью имитационной модели, в которую заложены координаты и скорости движения всех атомов какой-либо живой системы и законы их взаимодействия. Для любой живой системы такая модель должна содержать огромное количество переменных и параметров и практически неосуществима, но попытки моделировать с помощью такого подхода функционирование элементов живых систем? биомакромолекул делаются, начиная с 70-х годов.

«Молекулярная динамика» — весьма быстро и активно развивающееся направление науки. Функциональные свойства белков, в том числе их ферментативная активность, определяются их способностью к конформационным перестройкам. Внутренние движения атомов и атомных групп глобулярных белков происходят с характерными временами порядка 10-13 ? 10-15с амплитудой порядка 0,02 нм. Существенные изменения конформации, например, открытие «кармана» реакционного центра для образования фермент-субстратного комплекса, требует коллективных согласованных движений, характерные времена которых на много порядков больше, а амплитуды составляют десятки ангстрем. Проследить, каким образом физические взаимодействия отдельных атомов реализуются в виде макроскопических конформационных движений стало возможным благодаря методам молекулярной динамики.

Начальные координаты и скорости частиц задаются с учетом данных рентгеновской спектроскопии и ядерного магнитного резонанса. Значения параметров атом?атомных взаимодействий определяются эмпирически из условия максимального соответствия рассчитанных по потенциалу и экспериментально измеренных спектральных, термодинамических, и структурных характеристик низкомолекулярных компонент биологических макромолекул.
На экране компьютера можно наблюдать траектории отдельных атомов и внутреннюю подвижность макромолекулы.

Первые вычислительные эксперименты для белковой молекулы? ингибитора трипсина панкреатической железы? были проведены по методу молекулярной динамики в 1977 г. Дж.А.Мак-Кэмоном с сотрудниками. Молекула состоит из 58 аминокислотных остатков и содержит 454 тяжелых атома, в структуру также включали четыре внутренних молекулы воды, локализованные согласно кристаллографическим данным. Удалось воспроизвести основной элемент вторичной структуры белка? антипараллельную скрученную b?структуру, а также короткий a?спиральный сегмент.

В последние годы выполнены расчеты молекулярной динамики сотен белков, среди них миоглобина, лизоцима, ретиналь связывающего белка, моделировали также перенос электрона в белковых комплексах. В расчетах наблюдалась значительная подвижность области белок?белкового контакта, в том числе перемещение ароматической группы белка в область контакта за времена 100 пс. Результаты молекулярной динамики подтверждают роль флуктуаций в электронно-конформационных взаимодействиях, сопровождающих процессы транспорта электронов, миграции и трансформации энергии, ферментативного катализа.

2. Модели систем организма.

В настоящее время имеются имитационные модели многих систем организма — сердца, желудочно-кишечного тракта, почек, печени, мозга, и других.

3. Модели продукционного процесса растений.

Имитационные модели продукционного процесса растений (агробиоценозов) для разных культур являются одними из первых имитационных моделей. Практическая задача моделирования? выбор оптимальной стратегии проведения сельскохозяйственных мероприятий: орошения, полива, внесения удобрений с целью получения максимального урожая. Существует большое число моделей разных культур, как упрощенных, предназначенных для решения конкретных вопросов управления, так и очень подробных, используемых в основном для исследовательских целей. Подробные модели имеют иерархическую блочную структуру. Среди биотических процессов выделяют блок фотосинтеза, блок корневого питания, блок роста и развития, блок почвенной микрофлоры, блок развития болезней сельскохозяйственной культуры и другие. Рассматриваются также геофизические процессы: формирование теплового и водного режима, концентрации и передвижения биогенных и токсических солей, концентрации СО2 в посеве и других. Методику работы с такими сложными моделями мы рассмотрели выше. Более подробное описание моделей продукционного процесса растений можно найти в книгах:

  1. .Бондаренко Н.Ф. «Моделирование продуктивности агроэкосистем». Л., 1982;
  2. Заславский Б.Г., Полуэктов Р.А. Управление экологическими системами. М..1988
  3. Торнли Дж. Математические модели в физиологии растений. Киев, 1982
  4. Франс Дж., Торнли Дж. «Математические модели в сельском хозяйстве», М., 1987;
  5. Vries de P. Simulation of plant growth and crop production/ Wageningen, 1982.
  6. Wit C.T. Simulation of assimilation, respiration, and transpiration of crops, Wageningen, 1978

Kниги 3-6 имели несколько более поздних переизданий на Западе.

4. Модели водных экосистем.

Водная среда гораздо более однородна, чем сухопутные биогеоценозы, и имитационные модели водных систем успешно создаются начиная с 70-х годов 20 века. Описание обменных процессов в водной среде включает описание усвоения азота, фосфора и других биогенных элементов, рост фито- и зоопланктона и детрита. При этом важно учитывать гидробиологические процессы в рассматриваемых водоемах, которые, как правило, являются неоднородными и при моделировании разбиваются на ряд компартментов.

С помощью имитационного моделирования решались вопросы выработки стратегии борьбы с эфтрификацией закрытых водоемов, в частности, одного из Великих Американских озер — Озера Эри. Много имитационных моделей посвящено разработке оптимальной стратегии вылова рыбы.
Пионерскими в этой области были книги:

Меншуткин В.В. Математическое моделирование популяций и сообществ водных животных, Л., 1971
Jorgensen S.E. Lake management. Oxford, 1980
Экологические системы. Адаптивная оценка и управление. (под ред Э.Холлинга), М., 1981
Горстко А.Б., Домбровский Ю.А., Сурков Ф.А. Методы управления эколого-эконоическими. М., 1985
Основные идеи и результаты по моделированию водных систем, так же как и по моделированию продукционного процесса растений изложены в учебном пособии Г.Ю.Ризниченко, А.Б.Рубин «Математические модели биологических продукционных процессов». М., 1993. Готовится к печати дополненное и переработанное издание

Модели глобальной динамики сыграли особую роль в становлении имитационного моделирования. Именно для этих моделей был разработан формализм представления системы в виде узлов и потоков между ними, который затем в разных видах использовался практически во всех моделях сложных систем. Первая глобальная модель была создана Д. Форрестером и Д. Медоузом с соавторами по заказу Римского клуба в 60 годы 20 века.

Полученные с ее помощью результаты были опубликованы в знаменитой переведенной на 35 языков книге «Пределы роста», и впервые послужили предостережением человечеству в том, что Земля — ограниченная система, безудержный прогресс ведет к истощению ее ресурсов, и человечество ждет глобальный экологический кризис. . Современное состояние проблемы описано в книге Д.Х.Медоуз, Д.Л.Медоуз, Й.Рандерс «За пределами роста» М., Прогресс. 1994. (Donella H.Meadows et.al Beyond the Limits, (Confronting global collapse. Envisioning a sustainable future.1992)

Вторая знаменитая глобальная модель — модель ядерной зимы, была создана под руководством Н.Н. Моисеева в России. Ее результаты наглядно показали, что глобальная ядерная война приведет к уничтожению как побежденных, так и победителей, так как после нее небо над всей Землей закроется тучами и настанет ядерная зима на период в несколько десятков лет. Поэтому победа в такой войне будет быссмысленной.

В настоящее время активно разрабатываются глобальные модели, позволяющие рассчитать «парниковый эффект» и другие процессы, протекающие в глобальном масштабе.

Ясно, что разработка имитационной модели сложной системы и работа с этой моделью требуют усилий целого коллектива специалистов как в области машинной математики, так и в предметной области. Подробное изучение методологии имитационного моделирования не входит в задачу нашего курса, мы будем заниматься более общими вопросами.

Всякая сложная система при своем функционировании подчиняется физическим, химическим и биологическим законам. Однако нам известны не все законы. Одна из целей математического моделирования и заключается в установлении этих законов путем проверки альтернативных гипотез физических (или биологических) механизмов того или иного явления.

Другой, более практической, является уже упоминаемая нами цель оптимального управления продукционным процессом.

Таким образом, приступая к построению математической модели системы, необходимо взглянуть на эту систему под определенным углом зрения, который в значительной мере определяет вид модели. Необходимо сформулировать основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели. Это позволяет из множества законов, управляющих поведением системы, отобрать те, влияние которых существенно при поиске ответов на поставленные вопросы. В дополнение к этим законам, если необходимо, для системы в целом или ее частей формулируются определенные гипотезы о функционировании. Гипотезы, как и законы, формулируются в виде определенных математических соотношений.

Дальнейшая работа состоит в исследовании полученных соотношений с применением аналитических или вычислительных методов, приводящих к ответу на поставленные перед моделью вопросы. Если модель хороша, полученные на модели ответы могут быть отнесены к самой моделируемой системе. Более того, с помощью такой модели можно расширить круг представлений о системе, например, выбрав одну из альтернативных гипотез о механизмах ее функционирования и отбросив остальные, неправдоподобные. Если же модель плохая, т.е. недостаточно адекватно описывает систему с точки зрения поставленных перед ней вопросов, ее следует усовершенствовать. Критерием адекватности служит практика, эксперимент, и критерий этот не может быть полностью формализован.

Специфика моделей живых систем

Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

1. Сложные системы. Все биологические системы являются сложными многокомпонентными, пространственно структурированными, элементы которых обладают индивидуальностью. При моделировании таких систем возможно два подхода. Первый — агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций.

Другой подход? подробное рассмотрение элементов системы и их взаимодействий, рассмотренное выше имитационное моделирование,. Имитационная модель не допускает аналитического исследования, но ее параметры имеют ясный физический и биологический смысл, при хорошей экспериментальной изученности фрагментов системы она может дать количественный прогноз ее поведения при различных внешних воздействиях.

2. Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста (в нелимитированных условиях? экспоненциального), возможность неустойчивости стационарного состояния в локальных системах (необходимое условие возникновения колебательных и квазистохастических режимов) и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах (условие неоднородных в пространстве распределений и автоволновых режимов).

Важную роль в развитии сложных пространственно-временных режимов играют процессы взаимодействия компонентов (биохимические реакции) и процессы переноса, как хаотического (диффузия), так и связанного с направлением внешних сил (гравитация, электромагнитные поля) или с адаптивными функциями живых организмов (например, движение цитоплазмы в клетках под действием микрофиламентов).

3. Открытые системы, постоянно пропускающие через себя потоки вещества и энергии. Биологические системы далеки от термодинамического равновесия, и потому описываются нелинейными уравнениями. Линейные соотношения Онзагера, связывающие силы и потоки, справедливы только вблизи термодинамического равновесия.

4. Биологические объекты имеют сложную многоуровневую систему регуляции. В биохимической кинетике это выражается в наличии в схемах петель обратной связи, как положительной, так и отрицательной. В уравнениях локальных взаимодействий обратные связи описываются нелинейными функциями, характер которых определяет возможность возникновения и свойства сложных кинетических режимов, в том числе колебательных и квазистохастических.

Такие нелинейности при учете пространственного распределения и процессов переноса обусловливают паттерны стационарных структур (пятна различной формы, периодические диссипативные структуры) и различные типы автоволнового поведения (движущиеся фронты, бегущие волны, ведущие центры, спиральные волны и др.)

На уровне органа, организма, популяции живая система также является гетерогенной, и это ее основополагающее свойство необходимо учитывать при создании математической модели. Само возникновение пространственной структуры и законы ее формирования представляет одну из задач теоретической биологии. Один из подходов решения такой задачи? математическая теория морфогенеза.

В заключение этой вводной лекции отметим, что компьютерные грамматики позволяют получить изображения, очень напоминающие те, которые мы видим в природе и на картинах великих мастеров. Вероятно, компьютерная логика, человеческий мозг и вся природа следуют единым законам.

Литература

Бондаренко Н.Ф. «Моделирование продуктивности агроэкосистем». Л., 1982;
Горстко А.Б., Домбровский Ю.А., Сурков Ф.А. Модели управления эколого-экономическими системами. М., 1984.
Джефферс Д.»Введение в системный анализ: применение в экологии», М., 1981
Заславский Б.Г., Полуэктов Р.А. Управление экологическими системами. М..1988
Медоуз Д.Х,.Медоуз Д.Л, Рандерс Й. «За пределами роста» М., Прогресс. 1994.
Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1988
Рубин А.Б. Биофизика. Часть 1., М., 1999
Торнли Дж. Математические модели в физиологии растений. Киев, 1982
Франс Дж., Торнли Дж. «Математические модели в сельском хозяйстве», М., 1987;
Meadows Donella H. et.al. The Limits of the Growth. N.-Y. Universe Books. 1972, перевод на русский язык 1991 г
.Meadows Donella H et.al Beyond the Limits, (Confronting global collapse. Envisioning a sustainable future.1992)
Vries de P. Simulation of plant growth and crop production/ Wageningen, 1982.
Wit C.T. Simulation of assimilation, respiration, and transpiration of crops, Wageningen, 1978


Гомель, 2003 г.



УДК 57.082.14.002.2

Разработали: Стародубцева М. Н., Кузнецов Б. К.

Учебное пособие по теме «Математическое моделирование биологических процессов»

Пособие содержит две лабораторные работы, знакомящие студентов-медиков с основами математического моделирования биологических процессов, одна из них (два занятия) реализована в системе компьютерной алгебры Mathcad. В первой работе «Моделирование функционирования сердечно-сосудистой системы» рассматривается математическое моделирование биологических процессов, в том числе модели функционирования сердечно-сосудистой системы. Рассматривается системный подход в моделировании функционирования сложных объектов, принципы составления систем дифференциальных уравнений, описывающих поведение биологического объекта, а также такие понятия, как устойчивые и неустойчивые состояния, бифуркации, осцилляторы, синхронизация процессов. В практической части работы содержится алгоритм вычисления параметров кровообращения в покое и после нагрузки по опытным данным и методы их статистического анализа. В второй работе, связанной с компьютерным моделированием, содержится описание пользовательского интерфейса, входного языка системы Mathcad, основных методов вычислений (вычисление арифметических выражений, нахождение производных функций, интегралов, решение дифференциальных уравнений и систем дифференциальных уравнений), основ построения графиков, некоторых функций статистики (вычисление среднего значения, стандартного отклонения, нахождение уравнения линейной регрессии и коэффициента корреляции).

Для студентов 1-го курса медицинских высших учебных заведений всех факультетов.

Рецензенты:

Черенкевич С. Н.,

профессор, д.б.н, заведующий кафедрой биофизики Физического факультета Белгосуниверситета,

Асенчик О. Д.,

к.ф.-м.н., заведующий кафедрой информационных технологий Гомельского государственного технического университета им. П. О. Сухого.

Утверждено Научно-методическим советом института в качестве учебного пособия _____________ 2003 г., протокол № ____ по теме: «Математическое моделирование биологических процессов»

Ó Гомельский государственный медицинский институт, 2003 г.


Тема: Математическое моделирование биологических

процессов

Лабораторная работа 1

Математическое моделирование биологических процессов.

Моделирование функционирования сердечно-сосудистой

системы

Время занятия – 135 минут.

Цель: Изучить современные модели сердечно-сосудистой системы и показать на их примере эффективность применения метода моделирования для оценки состояния и выявления характерных особенностей поведения сложных биологических объектов.

1.1. Вопросы теории

1.1.1. Математическое моделирование биологических процессов. Биофизика сложных систем.

Функционирование сложной биологической системы, в том числе сердечно-сосудистой системы, является результатом взаимодействия составляющих ее элементов и протекающих в ней процессов. Следует иметь в виду, что согласно общему принципу восходящей иерархии типов движения (механическое – физическое – химическое – биологическое – социальное), биологическая форма движения не может быть полностью сведена к механической, физической или химической форме движения, а биологические системы не могут быть полностью описаны с позиций какой-либо одной из этих форм движения. Эти формы движения могут служить моделями биологической формы движения, то есть ее упрощенными образами.

Выяснить основные принципы регулирования процессов сложной биологической системы можно с помощью построения сначала механической, физической или химической модели системы, а затем построения их математических моделей, то есть отыскания описывающих эти модели математических функций, в том числе уравнений (создания математических моделей). Чем ниже уровень иерархии – тем проще модель, тем больше факторов реальной системы исключаются из рассмотрения.

Моделирование – это метод, при котором производится замена изучения некоторого сложного объекта (процесса, явления) исследованием его упрощенного аналога - модели. В биофизике, биологии и медицине широко применяются физические, химические, биологические и математические модели. Например, течение крови по сосудам моделируется движением жидкости по трубам (физическая модель). Биологическая модель – это простые биологические объекты, удобные для экспериментального исследования, на которых изучают свойства реальных более сложных биологических систем. Например, закономерности возникновения и распространения потенциала действия по нервному волокну были изучены на биологической модели – гигантском аксоне кальмара.

Математическая модель – это совокупность математических объектов и отношений между ними, отражающая интересующие исследователя свойства и характеристики реального объекта. Адекватную математическую модель можно построить только с привлечением конкретных данных и представлений о механизмах сложных процессов. После построения математическая модель «живет» по своим внутренним законам, познание которых позволяет выявить характерные черты исследуемой системы (см. схему на рис. 1.1.). Результаты моделирования составляют основу управления процессами любой природы.

Биологические системы, по сути, являются чрезвычайно сложными структурно-функциональными единицами.


Рис. 1.1. Схема системного подхода в моделировании биологического объекта.

Чаще всего математические модели биологических процессов задаются в виде дифференциальных или разностных уравнений, но возможны и другие типы представлений модели. После того как модель построена, задача сводится к изучению ее свойств методами математической дедукции или путем машинного моделирования.

При изучении сложного явления обычно предлагают несколько альтернативных моделей. Проверяют качественное соответствие этих моделей объекту. Например, устанавливают наличие устойчивых стационарных состояний в модели, существование колебательных режимов. Модель, наилучшим образом соответствующую исследуемой системе, выбирают в качестве основной. Выбранную модель уточняют применительно к конкретной исследуемой системе. Задают числовые значения параметров по экспериментальным данным.

Процесс поиска математической модели сложного явления можно разделить на этапы, последовательность и взаимосвязь которых отражает схема ни рис. 1.2.


Рис. 1. 2. Схема поиска математической модели.

Этап 1 соответствует сбору имеющихся к началу исследования данных об изучаемом объекте.

На этапе 2 осуществляется выбор базовой модели (системы уравнений) из возможных альтернативных моделей по качественным признакам.

На этапе 3 производится идентификация параметров модели по экспериментальным данным.

На этапе 4 осуществляется проверка поведения модели на независимых экспериментальных данных. Для этого часто приходится ставить дополнительные эксперименты.

Если взятые для верификации модели экспериментальные данные «не вписываются» в модель, требуется проанализировать ситуацию и выдвинуть иные модели, исследовать свойства этих новых моделей, а затем поставить эксперименты, позволяющие сделать вывод о предпочтительности одной из них (этап 5).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Современная биология активно использует различные разделы математики: теорию вероятностей и статистику, теорию дифференциальных уравнений, теорию игр, дифференциальную геометрию и теорию множеств для формализации представлений о структуре и принципах функционирования живых объектов.

Многие ученые высказывали мысль о том, что область знаний становится наукой только тогда, когда выражает свои законы в виде математических соотношений. В соответствии с этим самая "научная" наука - физика - наука о фундаментальных законах природы, математика для нее - естественный язык. В биологии, для которой предметом изучения являются индивидуальные живые системы, дело обстоит сложнее. Только в нашем веке появились экспериментальные биохимия, биофизика, молекулярная биология, микробиология, вирусология, которые изучают воспроизводимые in vitro явления и активно используют физические, химические и математические методы.

В связи с индивидуальностью биологических явлений говорят именно о математических моделях в биологии (а не просто о математическом языке). Слово модель здесь подчеркивает то обстоятельство, что речь идет об абстракции, идеализации, математическом описании скорее не самой живой системы, а некоторых качественных характеристик протекающих в ней процессов. При этом удается сделать и количественные предсказания, иногда в виде статистических закономерностей. В отдельных случаях, например, в биотехнологии, математические модели, как в технике, используются для выработки оптимальных режимов производства.

1. Классы задач и математический аппарат

При разработки любой модели необходимо определить объект моделирования, цель моделирования и средства моделирования. В соответствии с объектом и целями математические модели в биологии можно подразделить на три больших класса. Первый - регрессионные модели, включает эмпирически установленные зависимости (формулы, дифференциальные и разностные уравнения, статистические законы) не претендующие на раскрытие механизма изучаемого процесса. Приведем два примера таких моделей.

1. Зависимость между количеством производителей хамсы S и количеством молоди от каждого нерестившегося производителя в большой имитационной модели динамики рыбного стада Азовского моря выражается в виде эмпирической формулы (Горстко и др, 1984)

Здесь S - количество сеголеток (штуки) на каждого нерестившегося производителя; x - количество зашедших весной из Черного моря в Азовское производителей хамсы (млрд штук); - среднеквадратичное отклонение.

1. Скорость поглощения кислорода опадом листьев может быть достаточно хорошо описывается формулой для логарифма скорости поглощения кислорода:

Здесь Y поглощение кислорода, измеренное в мкл(0,25 г)-1ч-1.; D - число дней, в течение которых выдерживались образцы; B - процентное содержание влаги в образцах; Т - температура, измеренная в градусах С.

Эта формула дает несмещенные оценки для скорости поглощения кислорода во всем диапазоне дней, температур и влажностей, которые наблюдались в эксперименте, со средним квадратичным отклонением в поглощении кислорода, равном =0.3190.321.

(Из книги: Д.Джефферс "Введение в системный анализ: применение в экологии", М., 1981)

Коэффициенты в регрессионных моделях обычно определяются с помощью процедур идентификации параметров моделей по экспериментальным данным. При этом чаще всего минимизируется сумма квадратов отклонений теоретической кривой от экспериментальной для всех точек измерений. Т.е. коэффициенты модели подбираются таким образом: чтобы минимизировать функционал:

Здесь i - номер точки измерения; xe - "экспериментальные значения переменных; хt - теоретические значения переменных; a1, a2... - параметры, подлежащие оценке; wi - "вес" i-го измерения; N - число точек измерения.

Второй класс - имитационные модели конкретных сложных живых систем, как правило, максимально учитывающие имеющуюся информацию об объекте. Имитационные модели применяются для описания объектов различного уровня организации живой материи - от биомакромолекул до моделей биогеоценозов. В последнем случае модели должны включать блоки, описывающие как живые, так и "косные" компоненты (См. Экология математическая). Классическим примером имитационных моделей являются модели молекулярной динамики, в которых задаются координаты и импульсы всех атомов, составляющих биомакромолекулу и законы их взаимодействия. Вычисляемая на компьютере картина "жизни" системы позволяет проследить, как физические законы проявляются в функционировании простейших биологических объектов - биомакромолекул и их окружения. Сходные модели, в которых элементами (кирпичиками) уже являются не атомы, а группы атомов, используются в современной технике компьютерного конструирования биотехнологических катализаторов и лекарственных препаратов, действующих на определенные активные группы мембран микроорганизмов, вирусов, или выполняющих другие направленные действия.

Имитационные модели созданы для описания физиологических процессов. Происходящих в жизненно важных органах: нервном волокне, сердце, мозге, желудочно-кишечном тракте, кровеносном русле. На них проигрываются "сценарии" процессов, протекающих в норме и при различных патологиях, исследуется влияние на процессы различных внешних воздействий, в том числе лекарственных препаратов. Имитационные модели широко используются для описания продукционного процесса растений и применяются для разработки оптимального режима выращивания растений с целью получения максимального урожая, или получения наиболее равномерно распределенного во времени созревания плодов. Особенно важны такие разработки для дорогостоящего и энергоемкого тепличного хозяйства.

2. Качественные (базовые) модели

В любой науке существуют простые модели, которые поддаются аналитическому исследованию и обладают свойствами, которые позволяют описывать целый спектр природных явлений. Такие модели называют базовыми. В физике классической базовой моделью является гармонический осциллятор (шарик - материальная точка - на пружинке без трения). Базовые модели, как правило, подробно изучаются в различных модификациях. В случае осциллятора шарик может быть в вязкой среде, испытывать периодические или случайные воздействия, например, подкачку энергии, и проч.. После того, как досконально математически изучена суть процессов на такой базовой модели, по аналогии становится понятными явления, происходящие в гораздо более сложных реальных системах. Например, релаксация конфирмационных состояний биомакромолекулы рассматривается аналогично осциллятору в вязкой среде. Таким образом, благодаря простоте и наглядности, базовые модели становятся чрезвычайно полезными при изучении самых разных систем.

Все биологические системы различного уровня организации, начиная от биомакромолекул вплоть до популяций, являются термодинамический неравновесными, открытыми для потоков вещества и энергии. Поэтому нелинейность - неотъемлемое свойство базовых систем математической биологии. Несмотря на огромное разнообразие живых систем, можно выделить некоторые важнейшие присущие им качественные свойства: рост, самоограничение роста, способность к переключениям - существование в двух или нескольких стационарных режимов, автоколебательные режимы (биоритмы), пространственная неоднородность, квазистохастичность. Все эти свойства можно продемонстрировать на сравнительно простых нелинейных динамических моделях, которые и выступают в роли базовых моделей математической биологии.

3. Неограниченный рост. Экспоненциальный рост. Автокатализ

математический биология молекулярный популяция

В основе любых моделей лежат некоторые предположения. Модель, построенная на основе этих предположений, становится самостоятельным математическим объектом, который можно изучать с помощью арсенала математических методов. Ценность модели определяется тем, насколько характеристики модели соответствуют свойствам моделируемого объекта. Одно из фундаментальных предположений, лежащих в основе всех моделей роста - пропорциональность скорости роста численности популяции, будь то популяция зайцев или популяция клеток. В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей - это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления. Для сложно организованных растений и животных размножение происходит по более сложному закону, но в простейшей модели можно предположить, что скорость размножения вида пропорциональна численности этого вида.

Математически это записывается с помощью дифференциального уравнения, линейного относительно переменной x, характеризующей численность (концентрацию) особей в популяции:

Здесь R в общем случае может быть функцией как самой численности, так и времени, или зависеть от других внешних и внутренних факторов.

Предположение о пропорциональности скорости роста популяции ее численности было высказано еще в 18 веке Томасом Робертом Мальтусом (1766-1834) в книге "О росте народонаселения" (1798). Согласно закону (1), если коэффициент пропорциональности R=r=сonst (как это предполагал Мальтус), численность будет расти неограниченно по экспоненте.

В своих работах Мальтус обсуждает последствия этого закона в свете того обстоятельства, что производство продовольствия и других товаров растет линейно, и следовательно, популяция, растущая экспоненциально, обречена на голод.

Для большинства популяций существуют ограничивающие факторы, и по тем или иным причинам рост популяции прекращается. Единственное исключение представляет человеческая популяция, которая на протяжении всего исторического времени растет даже быстрее, чем по экспопненте. (См. Экология математическая, раздел Рост численности человечества). Исследования Мальтуса оказали большое влияние как на экономистов, так и на биологов. В частности, Чарльз Дарвин пишет в своих дневниках, что положенные в основу модели Мальтуса предположения и пропорциональности скорости роста популяции ее численности представляются весьма убедительными, и из этого следует неограниченный экспоненциальный рост численности. В то же время, ни одна из популяций в природе не растет до бесконечности. Следовательно, существуют причины, препятствующие такому росту. Одну из таких причин Дарвин видит в борьбе видов за существование.

Закон экспоненциального роста справедлив на определенной стадии роста для популяций клеток в ткани, водорослей или бактерий в культуре. В моделях математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто - само, катализ - модификация скорости реакции, обычно ускорение, с помощью веществ, не принимающих участия в реакции) Таким образом, автокатализ - "самоускорение" реакции.

4. Ограниченный рост. Уравнение Ферхюльста

Базовой моделью, описывающей ограниченный рост, является модель Ферхюльста (1848):

Здесь параметр K носит название "емкости популяции" и выражается в единицах численности (или концентрации). Он не имеет какого-либо простого физического или биологического смысла и носит, системный характер, то есть определяется целым рядом различных обстоятельств, среди них ограничения на количество субстрата для микроорганизмов, доступного объема для популяции клеток ткани, пищевой базы или убежищ для высших животных.

График зависимости правой части уравнения (2) от численности x и численности популяции от времени представлены на рис. 1 (а и б).

Рис. 1 Ограниченный рост. Зависимость величины скорости роста от численности (а) и численности от времени (б) для логистического уравнения

В последние десятилетия уравнение Ферхюльста переживает вторую молодость. Изучение дискретного аналога уравнения (2) выявило совершенно новые и замечательные его свойства . Рассмотрим численность популяции в последовательные моменты времени. Это соответствует реальной процедуре пересчета особей (или клеток) в популяции. В самом простом виде зависимость численности на временном шаге номер n+1 от численности предыдущем шаге n можно записать в виде:

Поведение во времени переменной xn может носить характер не только ограниченного роста, как было для непрерывной модели (2), но также быть колебательным или квазистохастическим (рис.2).

Рис. 2 Вид функции зависимости численности на последующем шаге от численности на предыдущем шаге (а) и поведение численности во времени (б) при разных значениях параметра r: 1 - ограниченный рост; 2 - колебания, 3 - хаос

Тип поведения зависит от величины константы собственной скорости роста r. Кривые, представляющие вид зависимости значения численности в данный момент времени (t+1) от значений численности в предыдущий момент времени t представлены на рис. 2 слева. Справа представлены кривые динамики численности - зависимости числа особей в популяции от времени. Сверху вниз значение параметра собственной скорости роста r увеличивается.

Характер динамики численности определяется видом кривой зависимости F(t+1) от F(t). Эта кривая отражает изменение скорости прироста численности от самой численности. Для всех представленных на рис. 2 слева кривых эта скорость нарастает при малых численностях, и убывает, а затем обращается в нуль при больших численностях. Динамический тип кривой роста популяции зависит от того, насколько быстро происходит рост при малых численностях, т.е. определяется производной (тангенсом угла наклона этой кривой) в нуле, который определяется коэффициентом r - величиной собственной скорости роста. Для небольших r (r<3) численность популяции стремится к устойчивому равновесию. Когда график слева становится более крутым, устойчивое равновесие переходит в устойчивые циклы. По мере увеличения численности длина цикла растет, и значения численности повторяются через 2, 4, 8,..., 2n поколений. При величине параметра r>5,370 происходит хаотизация решений. При достаточно больших r динамика численности демонстрирует хаотические всплески (вспышки численности насекомых).

Уравнения такого типа неплохо описывают динамику численности сезонно размножающихся насекомых с неперекрывающимися поколениями. При этом некоторые достаточно просто измеряемые характеристики популяций, демонстрирующих квазистохастическое поведение, имеют регулярный характер. В некотором смысле, чем хаотичнее поведение популяции, тем оно предсказуемее. Например, при больших x амплитуда вспышки может быть прямо пропорциональна времени между вспышками.

Дискретное описание оказалось продуктивным для систем самой различной природы. Аппарат представления динамического поведения системы на плоскости в координатах позволяет определить, является наблюдаемая система колебательной или квазистохастической. Например, представление данных электрокардиограммы позволило установить, что сокращения человеческого сердца в норме носят нерегулярный характер, а в период приступов стенокардии или в прединфарктном состоянии ритм сокращения сердца становится строго регулярным. Такое "ужесточение" режима является защитной реакцией организма в стрессовой ситуации и свидетельствует об угрозе жизни системы.

Отметим, что решение разностных уравнений лежит в основе моделирования любых реальных биологических процессов. Богатство динамического поведения модельных траекторий разностных уравнений является основой их успешного применения для описания сложных природных явлений. При этом ограниченность параметрических областей существования определенного типа режимов служит дополнительным основанием для оценки адекватности предлагаемой модели.

Еще более интересные математические объекты получаются, если переписать уравнение (3) в виде:

и рассматривать константу с в комплексной области. При этом получаются объекты, называемые множествами Мандельброта Подробнее об этих множествах можно прочитать в книге "Красота фракталов" (Образы комплексных динамических систем), там же приведены их многочисленные красочные изображения. Имеют ли эти объекты биологическую интерпретацию, имеющую под собой глубокий смысл, или это просто красивый "сюрприз", который нам преподносит базовая система? Пока на этот вопрос нет окончательного ответа.

5. Ограничения по субстрату. Модели Моно и Михаэлиса-Ментен

Одной из причин ограничения роста может быть недостаток пищи (лимитирование по субстрату на языке микробиологии). Микробиологи давно подметили, что в условиях лимитирования по субстрату скорость роста растет пропорционально концентрации субстрата, а если субстрата вдоволь - выходит на постоянную величину, определяемую генетическими возможностями популяции. В течение некоторого времени численность популяции растет экспоненциально, пока скорость роста не начинает лимитироваться какими-либо другими факторами. Это означает, что зависимость скорости роста R в формуле (1) от субстрата может быть описана в виде:

Здесь КS - константа, равная концентрации субстрата, при которой скорость роста равна половине максимальной. 0 - максимальная скорость роста, равная величине r в формуле (2). Это уравнение было впервые написано крупнейшим французким биохимиком. Жаком Моно (1912-1976). Совместно с Франсуа Жакобом им были разработаны представления о роли транспортной рибонуклеиновой кислоты (mRNA) в аппарате размножения клетки. В развитие представлений о генных комплексах, которые были ими названы оперонами, Жакоб и Моно постулировали существование класса генов, которые регулируют функционирование других генов путем воздействия на синтез транспортной РНК. Такой механизм генной регуляции впоследствии полностью подтвердился для бактерий, за что обоим ученым (а также Андре Львову) была присуждена Нобелевская премия 1965 г. Ниже рассмотрена знаменитая модель генной регуляции синтеза двух ферментов, названная триггерной моделью Жакоба и Моно.

Жак Моно был также философом науки и незаурядным писателем. В своей знаменитой книге "Случайность и необходимость", 1971 Моно высказывает мысли о случайности возникновения жизни и эволюции, а также о роли человека и его ответственности за происходящие на Земле процессы.

Любопытно, что модель Моно (5) по форме совпадает с уравнением Михаэлиса-Ментен (1913), которое описывает зависимость скорости ферментативной реакции от концентрации субстрата при условии, когда общее количество молекул фермента постоянно и значительно меньше количества молекул субстрата:

Здесь КМ - константа Михаэлиса, одна из важнейших для ферментативных реакций величина, определяемая экспериментально, имеющая смысл и размерность концентрации субстрата, при которой скорость реакции равна половине максимальной.

Закон Михаэлиса-Ментен выводится на основании уравнений химической кинетики и описывает скорость образования продукта в соответствии со схемой:

Сходство уравнений (5) и (6) не случайно. Формула Михаэлиса-Ментен (5) отражает более глубокие закономерности кинетики ферментативных реакций, которые в свою очередь определяют жизнедеятельность и рост микроорганизмов, описываемые эмпирической формулой (5).

6. Базовая модель взаимодействия. Конкуренция. Отбор.

Биологические системы вступают во взаимодействие друг с другом на всех уровнях, будь то взаимодействие биомакромолекул в процессе биохимических реакций, или взаимодействие видов в популяциях. Взаимодействие может протекать в структурах, тогда система может быть охарактеризована определенным набором состояний, так происходит на уровне субклеточных, клеточных и организменных структур. Кинетика процессов в структурах в математических моделях как правило описывается с помощью систем уравнений для вероятностей состояний комплексов.

В случае, когда взаимодействие происходит случайно, его интенсивность определяется концентрацией взаимодействующих компонентов и их подвижностью обобщенной диффузией. Именно такие представления приняты в базовых моделях взаимодействия видов. Классической книгой, в которой рассматриваются математические модели взаимодействия видов стала книга Вито Вольтерра "Математическая теория борьбы за существование" (1931) . Книга, построена как математический трактат, в ней постулированы в математической форме свойства биологических объектов и их взаимодействий, а затем эти взаимодействия исследуются как математические объекты, Именно с этой работы В.Вольтерра начались современная математическая биология и математическая экология.

Вито Вольтерра (1860-1940) завоевал мировую известность своими работами в области интегральных уравнений и функционального анализа. Кроме чистой математики его всегда интересовали вопросы применения математических методов в биологии, физике, социальных науках. В годы службы в ВВС в Италии, он много работал над вопросами военной техники и технологии (задачи баллистики, бомбометания, эхолокации). В этом человеке сочетался талант ученого и темперамент активного политика, принципиального противника фашизма. Он был единственным итальянским сенатором, проголосовавшим против передачи власти Муссолини. Когда в годы фашистской диктатуры в Италии Вольтерра работал во Франции, Муссолини, желая привлечь на свою сторону всемирно известного ученого, предлагал ему различные высокие посты в фашистской Италии, но всегда получал решительный отказ. Антифашистская позиция привела Вольтерра к отказу от кафедры в Римском университете и от членства в итальянских научных обществах.

Серьезно вопросами динамики популяций В.Вольтерра стал интересоваться с 1925 г. после бесед с молодым зоологом Умберто Д"Анкона, будущим мужем его дочери, Луизы. Д"Анкона, изучая статистику рабных рынков на Адриатике, установил любопытный факт: когда в годы первой мировой войны (и сразу вслед за ней) интенсивность промысла резко сократилась, то в улове увеличилась относительная доля хищных рыб. Такой эффект предсказывался моделью "хищник-жертва", предложенной Вольтерра. Эту модель мы рассмотрим ниже. По сути дела это был первый успех математической биологии.

Вольтерра предположил по аналогии со статистической физикой, что интенсивность взаимодействия пропорциональна вероятности встречи (вероятности столкновения молекул), то есть произведению концентраций. Это и некоторые другие предположения (См. Популяционная динамика) позволили построить математическую теорию взаимодействия популяций одного трофического уровня (конкуренция) или разных трофическиъх уровней (хищник-жертва).

Системы, изученные Вольтерра, состоят из нескольких биологических видов и запаса пищи, который используют некоторые из рассматриваемых видов. О компонентах системы формулируются следующие допущения.

1. Пища либо имеется в неограниченном количестве, либо ее поступление с течением времени жестко регламентировано.

2. Особи каждого вида отмирают так, что в единицу времени погибает постоянная доля существующих особей.

3. Хищные виды поедают жертвы, причем в единицу времени количество съеденных жертв всегда пропорционально вероятности встречи особей этих двух видов, т.е. произведению количества хищников на количество жертв.

4. Если имеются пища в неограниченном количестве и несколько видов, которые способны ее потреблять, то доля пищи, потребляемая каждым видом в единицу времени, пропорциональна количеству особей этого вида, взятого с некоторым коэффициентом, зависящим от вида (модели межвидовой конкуренции).

5. Если вид питается пищей, имеющейся в неограниченном количестве, прирост численности вида за единицу времени пропорционален численности вида.

6. Если вид питается пищей, имеющейся в ограниченном количестве, то его размножение регулируется скоростью потребления пищи, т.е. за единицу времени прирост пропорционален количеству съеденной пищи.

Перечисленные гипотезы позволяют описывать сложные живые системы при помощи систем обыкновенных дифференциальных уравнений, в правых частях которых имеются суммы линейных и билинейных членов. Как известно, такими уравнениями описываются и системы химических реакций.

Действительно, согласно гипотезам Вольтерра, скорость процесса отмирания каждого вида пропорциональна численности вида. В химической кинетике это соответствует мономолекулярной реакции распада некоторого вещества, а в математической модели - отрицательным линейным членам в правых частях уравнений. Согласно представлениям химической кинетики, скорость бимолекулярной реакции взаимодействия двух веществ пропорциональна вероятности столкновения этих веществ, т.е. произведению их концентрации. Точно так же, согласно гипотезам Вольтерра, скорость размножения хищников (гибели жертв) пропорциональна вероятности встреч особей хищника и жертвы, т.е. произведению их численностей. И в том и в другом случае в модельной системе появляются билинейные члены в правых частях соответствующих уравнений. Наконец, линейные положительные члены в правых частях уравнений Вольтерра, отвечающие росту популяций в неограниченных условиях, соответствуют автокаталитическим членам химических реакций. Такое сходство уравнений в химических и экологических моделях позволяет применить для математического моделирования кинетики популяций те же методы исследований, что и для систем химических реакций. Можно показать, что вольтеровские уравнения могут быть получены не только из локального "принципа встреч", ведущего свое происхождение из статистической физики, но и исходя из баланса масс каждого из компонентов ценоза и энергетических потоков между этими компонентами.

Рассмотрим простейшую из Вольтерра моделей модель отбора на основе конкурентных отношений. Эта модель работает при рассмотрении конкурентных взаимодействий любой природы биохимических соединений различного типа оптической активности, конкурирующих клеток, особей, популяций. Ее модификации применяются для описания конкуренции в экономике.

Пусть имеется два совершенно одинаковых вида с одинаковой скоростью размножения, которые являются антагонистами, то есть при встрече они угнетают друг друга. Модель их взаимодействия может быть записана в виде:

Согласно такой модели, симметричное состояния сосуществования обоих видов является неустойчивым, один из взаимодействующих видов обязательно вымрет, а другой размножится до бесконечности.

Введение ограничения на субстрат (типа 5) или системного фактора, ограничивающего численность каждого из видов (типа 2) позволяет построить модели, в которых один из видов выживает и достигает определенной стабильной численности. Они описывают известный в экспериментальной экологии принцип конкуренции Гаузе, в соответствии с которым в каждой экологической нише выживает только один вид.

В случае, когда виды обладают различной собственной скоростью роста, коэффициенты при автокаталитических членах в правых частях уравнений будут различными, а фазовый портрет системы становится несимметричным. При различных соотношениях параметров в такой системе возможно как выживание одного из двух видов и вымирание второго (если взаимное угнетение более интенсивно, чем саморегуляция численности), так и сосуществование обоих видов, в случае, когда взаимное угнетение меньше, чем самоограничение численности каждого из видов.

Рис. 4 Схема синтеза двух ферментов Жакоба и Моно (а) и фазовый портрет триггерной систем (б)

Еще одной классической триггерной системой является модель альтернативного синтеза двух ферментов Жакоба и Моно. Схема синтеза приведена на рис. 4а. Ген-регулятор каждой системы синтезирует неактивный репрессор. Этот репрессор, соединяясь с продуктом противоположной системы синтеза ферментов, образует активный комплекс. Активный комплекс, обратимо реагируя с участком структурного гена опероном, блокирует синтез mРНК. Таким образом, продукт второй системы Р2 является корепрессором первой системы, а Р1 - корепрессором второй. При этом в процессе корепрессии могут участвовать одна, две и более молекул продукта. Очевидно, что при таком характере взаимодействий при интенсивной работе первой системы вторая будет заблокирована, и наоборот. Модель такой системы предложена и подробно изучены в школе проф. Д.С.Чернавского После соответствующих упрощений, уравнения, описывающие синтез продуктов Р1 и Р2 имеют вид:

Здесь P1, P2 - концентрации продуктов, величины A1, A2, B1, B2, выражаются через параметры своих систем. Показатель степени m показывает, сколько молекул активного репрессора (соединений молекул продукта с молекулами неактивного репрессора, который предполагается в избытке) соединяются с опероном для блокировки синтеза mRNK.

Фазовый портрет системы, (изображение траекторий системы при разных начальных условиях на координатной плоскости, по осям которой отложены величины переменных системы), для m=2 изображен на рис.4б. Он имеет тот же вид, что и фазовый портрет системы двух конкурирующих видов. Сходство свидетельствует о том, что в основе способности системы к переключениям лежит конкуренция - видов, ферментов, состояний.

Рис. 5 Модель химических реакций Лотки. Фазовый портрет системы при значениях параметров, соответствующих затухающим колебаниям

7. Классические модели Лотки и Вольтерра

Первое понимание, что собственные ритмы возможны в богатой энергией системе за счет специфики взаимодействия ее компонентов пришло после появления простейших нелинейных моделей взаимодействия - химических веществ в уравнениях Лотки, и взаимодействия видов - в моделях Вольтерра .

Уравнение Лотки рассмотрено им в 1926 г. в книге и описывает систему следующих химических реакций

В некотором объеме находится в избытке вещество А. Молекулы А с некоторой постоянной скоростью превращаются в молекулы вещества X (реакция нулевого порядка). Вещество X может превращаться в вещество Y, причем скорость этой реакции тем больше, чем больше конценрация вещества Y - реакция второго порядка. В схеме это отражено обратной стрелкой над символом y. Молекулы Y в свою очередь необратимо распадаются, в результате образуется вещество B (реакция первого порядка).

Запишем систему уравнений, описывающих реакцию:

Здесь X, Y, B - концентрации химических компонентов. Первые два уравнения этой системы не зависят от B, поэтому их можно рассматривать отдельно. При определенных значениях параметров в системе возможны затухающие колебания.

Базовой моделью незатухающих колебаний служит классическое уравнение Вольтерра, описывающее взаимодействие видов типа хищник-жертва. Как и в моделях конкуренции (8), взаимодействие видов описывается в соответствии с принципами химической кинетики: скорость убыли количества жертв (x) и скорость прибыли количества хищников (y) считается пропорциональными их произведению

На рис. 6 представлены фазовый портрет системы, по осям которого отложены численности жертв и хищников - (а) и кинетика численности обоих видов - зависимость численности от времени-(б). Видно, что численности хищников и жертв колеблются в противофазе.

Рис. 6 Модель хищник-жертва Вольтерра, описывающая незатухающие колебания численности. А. Фазовый портрет. Б. Зависимость численности жертвы и хищника от времени

Модель Вольтерра имеет один существенный недостаток. Параметры колебаний ее переменных меняются при флуктуациях параметров и переменных системы. Такую систему называют негрубой.

Этот недостаток устранен в более реалистичных моделях. Модификация модели Вольтерра с учетом ограниченности субстрата в форме Моно (уравнение 5) и учет самоограничения численности (как в уравнении 2) приводит к модели, подробно изученной А.Д.Базыкиным в книге "Биофизика взаимодействующих популяций" (1985).

Система (11 представляет собой некий кентавр, составленный из базовых уравнений (1, 2, 5, 10)и объединяющий их свойства. Действительно, при малых численностях и в отсутствие хищника жертва (x) будет размножаться по экспоненциальному закону(1). Хищник (y) в отсутствие жертв будут вымирать также по экспоненте. Если особей того или иного вида много, в соответствии с базовой моделью (2) срабатывает системный ферхюльстовский фактор (член -Ex2 в первом уравнении, и -My2 - во втором). Интенсивность взаимодействия видов считается пропорциональной произведению их численностей (как в модели (10)) и описывается в форме Моно (модель 5). Здесь роль субстрата играет вид-жертва, а роль микроорганизмов - вид-хищник. Таким образом, модель (11) брала в себя свойства базовых моделей (1), (2), (5), (10).

Но модель (11) представляет собой не просто сумму свойств этих моделей. С ее помощью можно описать и гораздо более сложные типы поведения взаимодействующих видов: наличие двух устойчивых стационарных состояний, затухающие колебания численностей и проч. При некоторых значениях параметров система становится автоколебательной. В ней с течением времени устанавливается режим, при котором переменные изменяются периодически с постоянным периодом и амплитудой независимо от начальных условий.

8. Волны жизни

До сих пор мы говорили о базовых моделях поведения живых систем во времени. Стремление к росту и размножению ведет к распространению в пространстве, занятию нового ареала, экспансии живых организмов. Жизнь распространяется так же как пламя по степи во время степного пожара. Эта метафора отражает тот факт, что пожар (в одномерном случае - распространение пламени по бикфордову шнуру) описывается с помощью той же базовой модели, что и распространение вида. Знаменитая в теории горения модель ПКП (Петровского - Колмогорова - Пискунова) впервые была предложена ими в 1937 г. именно в биологической постановке как модель распространения доминирующего вида в пространстве. Все три автора этой работы являются крупнейшими российскими математиками. Академик Иван Георгиевич Петровский (1901-1973) - автор фундаментальных трудов по теории дифференциальных уравнений, алгебре, геометрии, математической физике, в течение более 20 лет был ректором Московского Государственного университета им. М.В.Ломоносова. (1951-1973). Андрей Николаевич Колмогоров (1903--) глава российской математической школы по теории вероятностей и теории функций, автор фундаментальных трудов по математической логике, топологии, теории дифференциальных уравнений, теории информации, организатор школьного и университетского математического образования, написал несколько работ, в основу которых положены биологические постановки. В частности в 1936 г. он предложил и подробно исследовал обобщенную модель взаимодействия видов типа хищник-жертва (исправленный и дополненный вариант 1972).(См. Популяционная динамика)

Рассмотрим постановку задачи о распространении вида в активной - богатой энергией (пищей) среде. Пусть в любой точке прямой r>0 размножение вида описывается функцией f(x) = x(1-x). В начальный момент времени вся область слева от нуля занята видом x, концентрация которого близка к единице.. Справа от нуля - пустая территория. В момент времени t=0 вид начинает распространяться (диффундировать) вправо с константой диффузии D. Процесc описывается уравнением:

При t>0 в такой системе начинает распространяться волна концентраций в область r>0, которая является результатом двух процессов: случайного перемещения особей (диффузии частиц) и размножения, описываемого функцией f(x). С течением времени фронт волны перемещается вправо, причем его форма приближается к определенной предельной форме. Скорость перемещения волны определяется коэффициентом диффузии и формой функции f(x), и для функции f(x), равной нулю при x=0 и x=1 и положительной в промежуточных точках, выражается простой формулой: =2Df"(0).

Изучение пространственного перемещения в модели хижник-жертва (10) показывает, что в такой системе в случае неограниченного пространства будут распространяться волны "бегства и погони", а в ограниченном пространстве установятся стационарные пространсвенно неоднородные структуры (диссипативные структуры), или автоволны, в зависимости от параметров системы.

9. Автоволны и диссипативные структуры. Базовая модель "брюсселятор"

На рассмотренной выше одномерной модели (14) видно, что взаимодействие нелинейной химической реакции и диффузии приводит к нетривиальным режимам. Еще более сложного поведения следует ожидать в двумерных моделях, описывающих взаимодействие компонентов системы. Первая такая модель была изучена Тьюрингом в работе под названием "Химические основы морфогенеза". Алан М.Тьюринг (1912-1954) английский математик и логик, прославился своими работами по компьютерной логике и терии автоматов. В 1952 г. он опубликовал первую часть исследования, посвященного математической теории образования структур в первоначально однородной системе, где одновременно проходят химические реакции, в том числе автокаталитические процессы, сопровождаемые потреблением энергии, и пассивные процессы переноса - диффузия. Это исследование осталось незаконченным, так как он покончил жизнь самоубийством, находясь под действием депрессантов, которыми его принудительно лечили в тюрьме, где он отбывал срок по обвинению в гомосексуализме.

Работа Тьюринга стала классической, ее идеи легли в основу современной теории нелинейных систем, теории самоорганизации и синергетики. Рассматривается система уравнений:

Уравнения такого типа называются уравнениями "реакция-диффузия". В линейных системах диффузия процесс, который приводит к выравниванию концентраций во всем реакционном объеме. Однако в случае нелинейного взаимодействия переменных x и y, в системе может возникать неустойчивость гомогенного стационарного состояния и образуются сложные пространственно-временные режимы типа автоволн или диссипативных структур - стационарных во времени и неоднородных по пространству распределений концентраций, существование которых поддерживается в активных средах за счет потребления энергии системы в процессах диссипации. Условием возникновения структур в таких системах является различие коэффициентов диффузии реагентов, а именно, наличие близкодействующего "активатора" с малым коэффициентом диффузии и дальнодействующего "ингибитора" с большим коэффициентом диффузии.

Такие режимы в двухкомпонентной системе были изучены в деталях на базовой модели под названием "брюсселятор" (Пригожин и Лефевр, 1968), названной в честь брюссельской научной школы под руководством И.Р.Пригожина, в которой наиболее интенсивно проводились эти исследования.

Илья Романович Пригожин (род 1917 г. в Москве) - всю жизнь работал в Бельгии. С 1962 г. он - директор Международного Сольвеевского института физической химии в Брюсселе, а с 1967 г. - директор Центра статистической механики и термодинамики Техасского университета (США).

В 1977 г. он получил Нобелевскую премию за работы по нелинейной термодинамике, в частности по теории диссипативных структур - устойчивых во времени неоднородных в пространстве структур. Пригожин является автором и соавтором целого ряда книг ["Термодинамическая теория структуры, устойчивости и флуктуаций", "Порядок из хаоса", "Стрела времени", и др.], в которых он развивает математические, физико-химические, биологические и философские идеи теории самоорганизации в нелинейных системах, исследует причины и закономерности рождения "порядка из хаоса" в богатых энергией открытых для потоков вещества и энергии системах, далеких от термодинамического равновесия, под действием случайных флуктуаций.

Классическая модель "брюсселятор" имеет вид

и описывает гипотетическую схему химических реакций:

Ключевой является стадия превращения двух молекул x и одной молекулы y в x так называемая тримолекулярная реакция. Такая реакция возможна в процессах с участием ферментов с двумя каталитическими центрами. Нелинейность этой реакции в сочетании с процессами диффузии вещества и обеспечивает возможность пространственно-временных режимов, в том числе образование пространственных структур в первоначально однородной системе морфогенез.

Заключение

Современная математическая биология использует различный математический аппарат для моделирования процессов в живых системах и формализации механизмов, лежащих в основе биологических процессов. Имитационные модели позволяют на компьютерах моделировать и прогнозировать процессы в нелинейных сложных системах, каковыми являются все живые системы, далекие от термодинамического равновесия. Базовые модели математической биологии в виде простых математических уравнений отражают самые главные качественные свойства живых систем: возможность роста и его ограниченность, способность к переключениям, колебательные и стохастические свойства, пространственно-временные неоднородности. На этих моделях изучаются принципиальные возможности пространственно-временной динамики поведения систем, их взаимодействия, изменения поведения систем при различных внешних воздействиях - случайных, периодических и т.п. Любая индивидуальная живая система требует глубокого и детального изучения, экспериментального наблюдения и построения своей собственной модели, сложность которой зависит от объекта и целей моделирования.

Литература

1. Вольтерра В. Математическая теория борьбы за существование. М., Наука, 1976, 286 с.

2. Пайтген Х.-О., Рихтер П.Х. Красота фракталов. Образы комплексных динамических систем. М., Мир, 1993, 176 с.

3. Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1993, 301 с.

4. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическая биофизика. М., Наука, 1984, 304 с.

5. Рубин А.Б., Пытьева Н.Ф., Ризниченко Г.Ю. Кинетика биологическизх процессов. М., МГУ., 1988

6. Свирежев Ю.М., Логофет. Устойчивость биологических сообществ М., Наука, 1978, 352c

7. Базыкин А.Д. Биофизика взаимодействующих популяций. М., Наука, 1985, 165 с.

8. J.D.Murray "Mathematical Biology", Springer, 1989, 1993.

Размещено на Allbest.ru

...

Подобные документы

    Специфика использования математических моделей в биологии. Пример определения зависимости между количеством и качеством потомства. Особенности имитационных и базовых моделей для описания ограниченного роста, конкуренции, отбора и волн жизни организмов.

    реферат , добавлен 09.10.2013

    Определение удельной скорости роста популяции бактерий. Решение дифференциального уравнения первого порядка. Нахождение общего и частного решения, постоянной С. Подставка известных чисел в уравнение. Расчет численности популяции бактерий через 4 часа.

    презентация , добавлен 23.03.2014

    Предмет изучения молекулярной биологии. Требования к решению задач на установление последовательности нуклеотидов в ДНК, иРНК, антикодонов тРНК, специфика вычисления количества водородных связей, длины ДНК и РНК. Биосинтез белка. Энергетический обмен.

    презентация , добавлен 05.05.2014

    Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

    контрольная работа , добавлен 25.02.2012

    Морфологическая характеристика тетеревиных. Ареал вида, образ жизни, питание, размножение, рост и развитие. Особенности сезонной смены перьевого покрова. Динамика численности тетеревиных. Сходства и различия в биологии изученных видов тетеревиных.

    курсовая работа , добавлен 12.02.2015

    Динамические характеристики популяции: рождаемость, смертность, выживаемость. Пространственное распределение особей, составляющих популяции. Рассмотрение колебания численности популяции как авторегулируемого процесса. Число доступных для жизни мест.

    презентация , добавлен 25.03.2015

    Выявление общего характера распределения и места концентрации кабанов в Северо-Западном Кавказе. Определение численности и плотности, возрастной структуры и половой популяции. Рассмотрение особенностей поведения кабанов на прикормочных площадках.

    дипломная работа , добавлен 18.07.2014

    Методология современной биологии. Философско-методологические проблемы биологии. Этапы трансформации представлений о месте и роли биологии в системе научного познания. Понятие биологической реальности. Роль философской рефлексии в развитии наук о жизни.

    реферат , добавлен 30.01.2010

    Электрофорез как один из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии. Электрофорез белков в полиакриламидном и агарозном геле. Оборудование для проведения капиллярного электрофореза.

    реферат , добавлен 31.08.2014

    Исследование биографии и научной деятельности Чарльза Дарвина, основоположника эволюционной биологии. Обоснование гипотезы происхождения человека от обезьяноподобного предка. Основные положения эволюционного учения. Сфера действия естественного отбора.