Первичная обмотка тороидального трансформатора. Пошаговая перемотка трансформатора на практическом примере


Для преобразования тока используются различные вид специальных устройств. Тороидальный трансформатор ТПП для сварочного аппарата и других приборов, можно намотать своими руками в домашних условиях, он является идеальным преобразователем энергии.

Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

  1. Металлического диска, изготовленного из рулонной магнитной стали для трансформаторов;
  2. Резиновой прокладки;
  3. Выводов первичной обмотки;
  4. Вторичной обмотки;
  5. Изоляции между обмотками;
  6. Экранирующей обмотки;
  7. Дополнительным слоем между первичной обмоткой и экранирующей;
  8. Первичной обмотки;
  9. Изоляционного покрытия сердечника;
  10. Тороидального сердечника;
  11. Предохранителя;
  12. Крепежных элементов;
  13. Покрывной изоляции.

Для соединения обмоток используется магнитопровод.

Этот тип преобразователей может классифицироваться по назначению, охлаждению, типу магнитопровода, обмоткам. По назначению бывает импульсный, силовой, частотный преобразователь (ТСТ, ТНТ, ТТС, ТТ-3). По охлаждению – воздушный и масляный (ОСТ, ОСМ, ТМ). По количеству обмоток – двухобмоточный и более.


Фото — принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.


Фото — тороидальный кольцевой преобразователь

Достоинства тороидального трансформатора :

  1. Небольшие габариты;
  2. Выходной сигнал на торе очень сильный;
  3. Обмотки имеют небольшую длину, и как результат уменьшенное сопротивление и повышенный КПД. Но также из-за этого при работе слышен определенный звуковой фон;
  4. Отличные характеристики энергосбережения;
  5. Простота в самостоятельной установке.

Преобразователь используется как сетевой стабилизатор, зарядное устройство, в качестве блока питания галогенных ламп, лампового усилителя УНЧ.


Фото — готовый ТПН25

Видео: назначение тороидальных трансформаторов

Принцип работы

Самый просто тороидальный трансформатор состоит из двух обмоток на кольце и сердечнике из стали. Первичная обмотка подключается к источнику электрического тока, а вторичная – к потребителю электроэнергии. За счет магнитопровода осуществляется соединение отдельных обмоток между собой и усиления их индуктивной связи. При включении питания в первичной обмотке создается переменный магнитный поток. Сцепляясь с отдельными обмотками, этот поток создает в них электромагнитную силу, которая зависит от количества витков намотки. Если изменять число обмоток, то можно сделать трансформатор для преобразования любого напряжения.


Фото — Принцип действия

Также преобразователи такого типа бывают понижающими и повышающими. Тороидальный понижающий трансформатор имеет высокое напряжение на выводах вторичной обмотки и низкое на первичной. Повышающий наоборот. Помимо этого, обмотки могут быть высшего напряжения или низшего, в зависимости от характеристик сети.

Как сделать

Изготовление тороидального трансформатора под силу даже молодым электрикам. Намотка и расчет не представляют собой ничего сложного. Предлагаем рассмотреть, как правильно мотать тороидальный магнитопровод для полуавтомата:


Учитывая, что 1 виток переносит 0,84 Вольт, схема намотки тороидального трансформатора выполняется по такому принципу:

Так можно с легкостью самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Описанную схему можно подключить как к дуговой сварке, так и к полуавтоматической. Параметры рассчитываются исходя из сечения провода, количества витков, размера кольца. Характеристики этого устройства позволяют производить ступенчатую регулировку. Среди достоинств принципа сборки: простота и доступность. Среди недостатков: большой вес.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно в любом городе Российской Федерации и стран СНГ. Он используется для различной аудиоаппаратуры. Рассмотрим, сколько стоит преобразователь.

Многие домашние мастера задумываются об изготовлении тороидального трансформатора своими руками. Объясняется это тем, что его эксплуатационные характеристики значительно лучше, чем у трансформаторов с сердечниками другой формы. Например, при тех же электрических характеристиках, его вес может быть до полутора раз меньше. К тому же и КПД такого трансформатора заметно выше.

Основных причин, по которым изготовление тороида не всегда удается, две:

  1. Трудно найти подходящий сердечник.
  2. Трудоемкость изготовления, особенно сложна намотка трансформатора.

Читайте также:

Расчет тороидального трансформатора

Для упрощенного расчета трансформатора на тороидальном магнитопроводе необходимо знать следующие исходные данные:

  1. Подаваемое на первичную обмотку входное напряжение U 1 .
  2. Наружный диаметр D сердечника.
  3. Его внутренний диаметр – d.
  4. Толщина магнитопровода – H.

Площадь поперечного сечения магнитопровода S c определяет мощность трансформатора и, соответственно, надежность работы будущего сварочного аппарата. Оптимальными считаются значения 45-55 см 2 . Рассчитать ее значение можно по формуле:

S c = H * (D – d)/2.

Важной характеристикой сердечника является площадь его окна S 0 , поскольку этот параметр определяет не только удобство намотки обмоточных проводов и интенсивность отвода избытков тепла, но и оказывает влияние на характер магнитного рассеяния. Оптимальные значения этого параметра 80-110 см 2 . Вычислить его значение позволяет формула:

S 0 = π * d 2 / 4.

P = 1,9 * S c * S 0 , где S c и S 0 берутся в квадратных сантиметрах, а P получается в ваттах.

Количество витков в первичной обмотке лучше рассчитать, используя в качестве исходного данного напряжение на вторичной обмотке:

W 1 = (U 1 * w 2) / U 2 , где U 1 – напряжение, подводимое к первичной обмотке, а U 2 – снимаемое со вторичной.

Дело в том, что регулировать сварочный ток лучше изменением числа витков первичной обмотки, поскольку величина тока в ней меньше, чем во вторичной. Пусть, например, нужно получить три значения выходного тока 60 А, 80 А и 100 А при мощности трансформатора 5000 Вт.

Этим значениям сварочного тока будут соответствовать следующие значения напряжений на вторичной обмотке:

U 21 = P / I 21 = 5000 Вт / 60 А = 83,3 В;

U 22 = P / I 22 = 5000 Вт / 80 А = 62,5 В;

U 23 = P / I 23 = 5000 Вт / 100 А = 50 В.

Пусть вторичная обмотка содержит w 2 = 70 витков. Теперь можно рассчитать число витков в соответствующих ступенях первичной обмотки для напряжения в сети U 1 = 220 В:

W 11 = (U 1 * w 2) / U 21 = 220 В * 70 / 83,3 В ≈ 185 витков;

W 12 = (U 1 * w 2) / U 22 = 220 В * 70 / 62,5 В ≈ 246 витков;

W 13 = (U 1 * w 2) / U 23 = 220 В * 70 / 50 В = 308 витков.

Последнее значение следует увеличить на 5%:

W 13 = 308 * 1,05 ≈ 323 витка – это и будет их необходимое число в первичной обмотке, а отводы следует сделать от 185-го и 246-го витка.

Для самодельных трансформаторов для сварки допустимая плотность тока в обмотках j = 3 А/мм 2 . Зная ее, можно найти площадь поперечного сечения проводов обмоток. В приведенном ранее примере максимальный ток в первичной обмотке:

I 1 m = P / U 1 = 5000 Вт / 220 В ≈ 23 А.

Сечение этого провода должно составлять:

S 1 = I 1 m / j = 23 А / 3 А/мм 2 ≈ 8 мм 2 .

Во вторичной обмотке следует применить провод с площадью поперечного сечения:

S 2 = I 23 / j = 100 А / 3 А/мм 2 ≈ 33 мм 2 .

Вернуться к оглавлению

Подбор и изготовление тороидального сердечника

Наилучшим материалом для изготовления тороидального магнитопровода является ленточная трансформаторная сталь. Для изготовления сердечника эта лента сворачивается в рулон, имеющий форму тора прямоугольного сечения. Если имеется такая лента или сердечник из нее, то особых проблем при изготовлении магнитопровода для тороидального трансформатора не будет.

При малом значении внутреннего диаметра d можно часть ленты с внутренней стороны тора отмотать, а затем намотать ее на наружную поверхность сердечника. В результате возрастут оба диаметра, а площадь внутренней части магнитопровода увеличится. Правда, несколько уменьшится площадь поперечного сечения сердечника S 0 . При необходимости можно добавить ленту с другого магнитопровода.

Хороший готовый тороидальный сердечник можно взять от рассчитанного на ток 9 А лабораторного автотрансформатора ЛАТР 1М. Нужно только перемотать его обмотки. Бывает, что для изготовления тороидального сердечника для трансформатора используется магнитопровод статора подходящего электродвигателя.

Еще один способ изготовления тороидального сердечника – использование в качестве материала пластин от неисправного мощного промышленного или силового трансформатора, питавшего в свое время ламповый цветной телевизор. Сначала из этих пластин с помощью заклепок изготовляется обруч, имеющий диаметр около 26 см. Затем внутрь этого обруча начинают вставлять одну за другой пластины встык, придерживая их рукой от разматывания.

После набора нужного сечения S 0 магнитопровод готов. Для увеличения S 0 можно изготовить два тороида одинаковых размеров, а затем соединить их вместе. Края тороидов следует слегка закруглить с помощью напильника. Из электроизоляционного картона следует изготовить два кольца, имеющих внутренний диаметр d и внешний D, а также две полоски на внутреннюю и наружную сторону тора. После наложения их на тороид, сердечник обматывается поверх картонных прокладок киперной или тканой изоляционной лентой. Магнитопровод готов, и можно начинать наматывать обмотки.

Намотка трансформатора своими руками - задача несложная, если к ней подготовиться заранее. Люди, которые изготавливают различную радиоаппаратуру или силовые инструменты, имеют потребность в трансформаторах для конкретных нужд. Поскольку далеко не всегда предоставляется возможность приобрести определенные изделия, то мастера зачастую наматывают тороидальные трансформаторы самостоятельно. Те, кто в первый раз пытаются провести обмотку, сталкиваются с трудностями: не могут определить правильность расчетов, подобрать соответствующие детали и технологию. Необходимо понимать, что разные типы наматываются по-разному.

Также кардинально отличаются тороидальные устройства . Расчет тороидального трансформатора и его намотка будут особыми. Так как радиолюбители и мастера создают детали под силовое оборудование, но не всегда обладают достаточными знаниями и опытом для их изготовления, то этот материал поможет данной категории людей разобраться с нюансами.

Подготовка к проведению намотки

Необходимые материалы

Материалы для намотки требуют тщательного выбора , важное значение имеет каждая из деталей. В частности, вам понадобятся:

  1. Каркас трансформаторный. Он используется для изоляции сердечника от обмоток, а также удерживает обмоточные катушки. Его изготавливают из прочных и тонких диэлектрических материалов, чтобы не занимать слишком много места в интервалах («окнах») сердечника. Можно воспользоваться картонками, микрофибрами, текстолитом. Толщина материала не должна быть более 2 мм. Каркас склеивают, пользуясь обычным клеем для столярных работ (нитроклеем). Его форма и размеры полностью зависят от сердечника, высота - немного больше, чем у пластины (высота обмотки).
  2. Сердечник. Эту роль, как правило, выполняют магнитопроводы. Лучшим решением станет применение пластин из разобранных трансформаторов, поскольку они произведены из подходящих сплавов и рассчитаны на некоторое количество витков. Магнитопроводы имеют разнообразную форму, но чаще всего встречаются изделия в виде буквы «Ш». Кроме того, их можно вырезать из различных заготовок, которые есть в наличии. Чтобы определить точные размеры, предварительно наматывают провода обмоток.
  3. Провода. Здесь нужно использовать два вида: для обмотки и для выводов. Оптимальное решение для трансформирующих устройств - медные провода, имеющие эмалевую изоляцию (тип ПЭЛ или ПЭ). Их хватит даже для силовых трансформаторов. Широкий выбор сечений позволяет подобрать самый подходящий вариант. Также часто применяют провода ПВ. Для вывода лучше всего брать провода с разноцветной изоляцией, чтобы не путаться при подключении.
  4. Изоляционные подкладки. Помогают увеличить изоляцию провода обмотки. Как правило, используют тонкую и плотную бумагу (отлично подойдет калька), которую следует уложить между рядов. Но бумага должна быть целой, разрывы и проколы, даже самые незначительные, - отсутствовать.

Как ускорить рабочий процесс

У многих радиолюбителей в арсенале имеются простые специальные агрегаты , с помощью которых делается обмотка. Во многих случаях речь идет о несложных конструкциях в виде небольшого столика либо подставки на стол, на которых установлено несколько брусков с вращающейся продольной осью. Длина самой оси должна превышать длину каркаса намотки в 2 раза. На одном из выходов из брусков крепится ручка, позволяющая вращать устройство.

На оси надеваются катушечные каркасы , которые стопорятся с двух сторон шпильками-ограничителями (они препятствуют перемещениям каркаса вдоль оси).

Преобразование тока или напряжения применяется практически в каждом электроприборе. Для чего нужен трансформатор? Более практичного и универсального прибора для преобразования напряжения еще не придумали.

Как устроен трансформатор?

Основа прибора – замкнутый магнитопровод. На него наматываются обмотки – от двух и более. При появлении на первичной обмотке переменного напряжения, в основе возбуждается магнитный поток. Он наводит на остальных обмотках переменное напряжение с аналогичной частотой.

Разница в количестве витков между обмотками определяет коэффициент изменения величины напряжения. Проще говоря, если вторичная обмотка имеет вдвое меньше витков, на ней возникнет напряжение, в два раза меньшее, чем в первичной. Мощность остается прежней, что позволяет работать с большими токами при меньшем напряжении.

Важно! Трансформатор может работать только с переменными или импульсными токами. Преобразовать постоянное напряжение таким образом невозможно.

Конструктивное исполнение различается по форме магнитопровода.

Броневой

Образует два витка магнитного поля, рассчитан на большие нагрузки. Магнитопровод разъемный, удобен в сборке – на центральный стержень надевается готовая обмотка. Недостаток – тяжелый, габаритный. Крайние и поперечные стержни магнитопровода эффективно не используются.

Стержневой

Конструкция аналогична броневому, магнитное поле одновитковое, соответственно мощность меньше. Также имеет разборную конструкцию. Эффективность использования поверхности магнитопровода не выше 40%.

Тороидальный трансформатор

Имеет самый высокий КПД. Это достигается за счет 100% использования площади магнитопровода. Поэтому, при одинаковой мощности, такие трансформаторы имеют меньшие размеры. Еще одно преимущество – за счет распределения обмоток по всей площади основы, охлаждение витков более эффективное. Это позволяет еще больше нагрузить преобразователь без превышения критической температуры. Недостаток один – такие трансформаторы сложно собирать, поскольку основа неразъемная.

Материалы для магнитопровода:

Железные основы набираются из пластин, наматываются ленточным способом, или отливаются монолитно. Наиболее эффективный материал – феррит. Чаще всего применяется именно в торах, увеличивая их КПД.

Какие бывают трансформаторы по конструкции, мы рассмотрели. При покупке готового прибора, вас мало волнует, насколько сложно его сделать.


Тороидальная конструкция удобна в монтаже (занимает мало места, крепится одним винтом). Однако стоит такой прибор выше, чем стержневые или броневые преобразователи напряжения. Часто его цена перекрывает экономию от самостоятельного изготовления всей электроустановки.

Тороидальный трансформатор, как сделать своими руками?

Первое, что приходит в голову – взять готовый тор от сломанной бытовой техники, и попробовать изменить параметры вторичной обмотки под ваши расчеты. Как перемотать трансформатор своими руками, знают все радиолюбители.

Но тороидальный сердечник не разбирается , если пропускать через «бублик» пару тысяч (или даже сотен) витков, на перемотку уйдут месяцы. Да и вероятность повредить оболочку проволоки при таком способе довольно высока.

Важно! Намоточная медная проволока имеет защитное лаковое покрытие. Иногда тряпичное, для мощных обмоток. Дополнительная изоляция увеличивает сечение, соответственно объем обмотки вырастает втрое. Поэтому при наматывании, витки укладываются без продольного перемещения (протяжки), чтобы не повреждать изоляцию.

Чтобы не задаваться вопросами типа: «Что можно сделать из трансформатора от микроволновки?» (из него делают споттеры для точечной сварки), логичнее будет подбирать трансформатор под конкретную задачу, а не наоборот.

Многие сварщики-любители мечтают о тороидальном трансформаторе. Ведь давно известно, что массогабаритные характеристики у тороидов намного лучше чем у "Ш" и "П"-образных трансформаторов. Так, при тех же характеристиках, тороид в 1,3-1,5 раза меньше. Причина по которой многие не берутся за изготовление такого трансформатора, - это отсутствие железа. Данная статья поможет найти выход из такой ситуации.

Конструкция предполагает изготовление тороидального трансформатора из отслужившего свое промышленного сварочного трансформатора. Для этого он разбирается, и из пластин размером 90X450 мм собирается бублик. Нужная площадь сечения сердечника зависит от количества пластин.

В принципе, пластины можно использовать и от силовых трансформаторов старых ламповых цветных телевизоров. Трансформатор ТС270, ТСА310 раэбирают. П-обраэные сердечники ударом молотка разбивают на пластины, которые на наковальне выправляют.
Для изготовления бублика, необходимо для начала склепать обруч из пластин, внешним диаметром 260 мм. Затем внутрь обруча вставляют первую пластину, придерживая её рукой, чтобы она не раскрутилась, встык к ней вставляют вторую, и так далее, до получения внутреннего диаметра бублика 120 мм. Если бублик делается из трансформаторов ТС270, то диаметр нужно пересчитать для достижения необходимой площади сечения. Можно сделать два бублика и сложить их вместе. В этом случае, внешние и внутренние диаметры бублика можно оставить без изменения.

Края тороида обрабатываются напильником. Из электрокартона изготавливаем два кольца внешним диаметром 270 мм, внутренним 110 мм, и полоску шириной 90 мм. Прикладываем заготовки из электрокартона к бублику и обматываем изолентой на тканной основе, можно обмотать тесьмой от петлей размагничивания кинескопов. Первичная обмотка мотается проводом ПЭВ-2 диаметром 2,0 мм, количество витков для 220 В примерно 170. Это во многом зависит от плотности сборки пластин. Точное количество витком можно проверить экспериментально. Если ток холостого хода будет больше 1-2 А, то необходимо домотать витки, если меньше - отмотать. Вторичная обмотка мотается проводом ПВ3 сечением 15-20 мм, 30 витков. Третья обмотка содержит так же 30 витков, но намотанных проводом МГТФ 0,35. Между обмотками прокладывается изоляция из тесьмы.

После испытания трансформатора можно можно приступить к изготовлению схемы управления. Она представляет собой фазовый регулятор тока. Переменное напряжение, снятое с третьей обмотки трансформатора выпрямляется мостом на диодах VD5-VD8 Положительной полуволной через резисторы R1 и R2 заряжается конденсатор С1. Когда напряжение на нём достигнет примерно шести вольт происходит пробой аналога низковольтного динистора, собранного на стабилитроне VD6 и тиристоре VS3, и через диод VD3 происходит открывание тиристора VS1. Ёмкость С1 при этом разряжается. То же самое происходит при отрицательной полуволне, только открывается диод VD4 и тиристор VS2. Резистор R3 служит для ограничения тока через аналог динистора.
Налаживание заключается в подстройке резистором R1 необходимой зоны регулирования сварочного тока.

В качестве SA1 можно использовать любой автомат на 25 А КД209А можно заменил» на КД202В-КД202М или любые другие на ток более 0,7 А и напряжение более 70 В. Тиристор КУКЛА можно заменить на КУ201-КУ202. Резисторы R1 и R2 - на мощность не менее 10 Вт. С1 - К50-6. VD1, VD2, VS1, VS2 на ток 160-250 А с любой группой по напряжению. Их необходимо установить на радиаторы с площадью охлаждения не менее 100 см2.

Обмотка 3 трансформатора рассчитана на напряжение 40 В, а вторичную, при необходимости, можно увеличить.