Что такое ферменты в биологии.  Биологические ферменты


Бедренный канал (латинское название canalis femoralis) расположен в паховом отделе, имеет трехгранную щелевидную форму, в норме содержит жировую ткань, артерии, вены, узлы лимфатической системы. Стенки бедренного канала образованы анатомическими структурными элементами широкой фасции бедра, а также внутренней стенкой вены бедра.

Полость в толще бедренного канала образуется при выходе через его поверхностную щель участков толстого или тонкого кишечника, частей складки висцеральной брюшины, в результате чего на передней поверхности бедра появляется грыжа. Заболеванию больше подвержены женщины и дети до года в силу особенностей анатомического строения тканей скарповского треугольника.

Анатомическое строение canalis femoralis

Бедренный канал имеет размеры от 1 до 3,5 см, связывает брюшную полость с передним отделом бедра. Топографическая анатомия бедренного канала включает несколько слоев и стенки, которые образованы сухожильными структурными элементами тела человека:

  • внутри – глубокой плотной пластинкой широкой фасции ноги (fascia pectinea), которая служит влагалищем для мышц бедра;
  • снаружи – подкожной сухожильной пластинкой широкой фасции, а именно верхним уплотнением ее серповидной границы;
  • латерально – сбоку, дальше от срединной плоскости – внутренней поверхностью бедренной вены;
  • с медиальной стороны, ближе к срединной плоскости, канал ограничен слившимися пластинками сухожильной фасции.

Фасция, покрывающая большие мышцы верхнего отдела нижней конечности, на уровне бедренного треугольника распадается на 2 пластинки. Расположенная в глубоких слоях пластинка служит футляром гребенчатой и дальнего отдела пояснично-подвздошной мышцы.

Подкожная пластинка, включающая овальную ямку, именуемую подкожной щелью, пролегает под пупартовой связкой. Она отличается неоднородным анатомическим строением. Там, где расположена овальная ямка, пластинка имеет решетчатую структуру с многочисленными ходами для сосудов и нервов. Щель является подкожным отверстием бедренного канала. Глубокое отверстие (бедренный канал, anulus femoralis) находится около медиально участка сосудистой лакуны.

Описание наружного выхода бедренного канала

Подкожная щель бедренного канала (hiatus saphenus, поверхностное углубление) расположена ближе к середине относительно портняжного мышечного пучка, ниже уровня паховой связки под решетчатой фасцией, в наружном листке широкой фасции. Схема границ подкожной щели выглядит следующим образом:

  • снаружи — верхний рог серповидного края;
  • латерально — серповидный край фасции;
  • глубже — нижний угол серповидного края.

Hiatus saphenus является воротами для лимфатических и кровеносных сосудов. Расположение нижнего рога широкой фасции можно определить по огибающей его большой подкожной вены нижней конечности (v. saphena magna). Эта вена берет свое начало от вершины треугольника бедра, доходит до подкожной щели, огибает ее по нижнему рогу фасции (cornu inferius), затем, проходя под фасцией в толще жировой клетчатки, впадает в вену бедра.

При наличии способствующих факторов вглубь щели проникают околобрюшинные доброкачественные соединительнотканные жировики, являющиеся предпосылкой для развития грыж. В норме подкожная щель имеет длину 3–4 см, ширину 2–2,5 см, при образовании грыжи представляет собой наружное отверстие бедренного канала.

Во время проведения оперативного вмешательства по удалению грыжи существует опасность возникновения кровотечения. Это обусловлено возможностью повреждения огибающей срединную границу кольца бедренного канала крупной запирательной артерии. Подобная вероятность присутствует при ее нехарактерном аномальном отхождении от нижней надчревной артерии.

Особенности строения внутреннего кольца

Глубокое бедренное кольцо (anulus femoralis) выполняет функцию внутреннего отверстия канала. Расположено оно в зоне среднего угла lacuna vasorum (сосудистой лакуны). Передняя поверхность кольца покрыта сухожильной ножковой аркой (ligamentum inguinale), но чаще ее упоминают под называнием «пупартовая связка». Сбоку глубокое кольцо граничит с плотным влагалищем вены бедренного отдела ноги.

Область между костями таза и пупартовой связкой разграничено фасцией подвздошной и гребенчатой мышц на 2 пространства: сосудистую и мышечную лакуны. Мышечная лакуна внутри граничит с поверхностью подвздошной кости, сверху она покрыта пупартовой связкой, ближе к середине ее границей служит уплотненный участок фасции (подвздошно-гребенчатая дуга).

Через сосудистую лакуну проходят крупные артерии и вены нижней конечности, занимают область под пупартовой связкой. От мышечной лакуны ее отграничивает arcus iliopectineus (дуга подвздошно-гребенчатая).

Пространство бедренного кольца заполнено соединительной рыхлой волокнистой тканью, а также узлом лимфатической системы, названного именем Пирогова-Розенмюллера. Внутреннее бедренное кольцо от лакунарной связки до бедренной вены имеет разные размеры в зависимости от пола и возраста человека. У мужчин его ширина варьирует от 0,9 до 1,2 см, у представительниц женского пола – примерно 1,9 см. Это отличие строения глубокого кольца объясняет повышенную частоту развития у женщин грыж бедренного отдела ноги.

Грыжи в толще структурных элементов мышечной лакуны образуются реже, так как они прочно удерживают содержимое брюшной полости. Чаще патологические выпячивания появляются в области сосудистой лакуны, в самом слабом ее отделе – внутреннем кольце бедренного канала.

Детализация строения стенок канала

Очертания canalis cruralis образованы 3 гранями. Подкожную область канала прикрывает внешний листок фасции, представляющий упругую пластинку. Листок берет начало от широкой сухожильной фасции и прикрепляется к длинной кости бедра. На поверхностном листке также расположена овальная ямка (подкожная щель), которая прикрывается решетчатой фасцией. Через ее многочисленные отверстия пролегает большое количество сосудов и нервных волокон. Fascia cribrosa (решетчатая) по периметру очерчена утолщенным серповидным краем с нижним и верхним рогами.

Во внутренних слоях передней области бедренного отдела стенкой канала является подвздошно-гребенчатая фасция – часть глубокой пластинки fascia lata (широкой фасции), в которой расположены одноименные мышцы.

Боковой отдел canalis cruralis прикрыт плотным влагалищем сосудов бедра, переходящим на вену, проходящую под решетчатым участком фасции. Здесь также пролегают поверхностный участок большой вены нижних конечностей, а также сосуды подкожных артериальных сосудов.

Содержимое канала в норме и при патологии

В нормальном состоянии пространство канала от глубокого кольца до подкожной щели заполнено рыхлой волокнистой жировой тканью. Когда в паховом отделе образуются грыжи, содержимое бедренного канала включает находящиеся в грыжевом мешке анатомические структуры брюшины, чаще петли кишечника, висцеральную складку. Иногда, расположенные на правой конечности грыжевые выпячивания могут содержать первый участок толстой кишки, на левой ноге — конечную часть ободочной кишки.

Главным признаком грыжи бедра является полусферическое выпячивание около внутренней зоны бедра в паховом отделе области скарповского треугольника. Необходимо отличать грыжи канала от грыж пахового отдела, варикозных узлов кровеносных сосудов, жировиков, натечных нагноений. Самой эффективной методикой диагностики является ультразвуковое исследование, с помощью которого определяют локализацию и содержимое патологического образования.

Причинами выпячивания грыж на передней поверхности бедра являются 2 основных фактора – ослабление брюшной стенки и повышение внутрибрюшного давления. Опосредованно спровоцировать заболевание могут стремительная потеря массы тела, травмы живота, рубцы после хирургических операций, вывихи бедра.

К прямым фактором, непосредственно влияющим на развитие грыж, относят чрезмерные физические нагрузки, замедленная или недостаточная дефекация, интенсивный кашель, затруднение мочеиспускания. Грыжи бедра часто встречаются у женщин, перенесших несколько беременностей или после затяжных родов, у детей первого года жизни с недостаточно прочной стенкой брюшной полости, а также лиц с наследственной предрасположенностью.


Бедренный канал формируется только в процессе выпячивания брюшины при прохождении бедренной грыжи через слабое место нижней стенки живота – медиальный отдел сосудистой лакуны, ограниченной:

Спереди - паховой связкой;

Сзади - гребенчатой связкой (Куперова связка), лежащей на гребне лобковой кости;

Медиально - лакунарной связкой, прикрепляющейся к лобковому бугорку и гребню лобковой кости;

Латерально - подвздошно-гребенчатой дугой.

Через сосудистую лакуну проходят бедренные сосуды, причем вена лежит медиальнее артерии (рис. 22А). В медиальном углу сосудистой лакуны расположено бедренное кольцо, которое при наличии грыжи (рис. 22Б) ограничивает сверху бедренный канал.

Границы бедренного кольца:

Передняя, задняя и медиальная границы совпадают с теми же границами сосудистой лакуны;

Латеральная граница - бедренная вена податлива, и может быть отодвинута кнаружи грыжевым мешком.

Расстояние между лакунарной связкой и бедренной веной у мужчин в среднем равно 1.2 см, у женщин-1.8 см. Чем больше это расстояние, тем больше вероятность возникновения бедренной грыжи, поэтому у женщин они встречаются значительно чаще, чем у мужчин(5:1).

Рис. 23. Сосудистая и мышечная лакуны правой паховой области.

А: 1мышечная лакуна –; 2 – подвздошно-гребенчатая дуга; 3 – паховая связка;

4 – бедренная артерия; 5 – бедренная вена; 6 – сосудистая лакуна; 7 – бедренное кольцо; 8 – лимфатический узел Пирогова-Розенмюллера; 9 – лакунарная связка; 10 – семенной канатик; 11 – гребенчатая мышца; 12 – запирательный сосудисто-нервный пучок; 13 – бедренный нерв; 14 – подвздошно-поясничная мышца.

Б: - ГМ – грыжевой мешок бедренной грыжи.

Бедренное кольцо со стороны полости живота покрыто поперечной фасцией, имеющей здесь название "бедренная перегородка". В пределах бедренного кольца, в сосудистой лакуне между бедренной веной и лакунарной связкой, остается щель, заполненная рыхлой клетчаткой, в которой располагается лимфатический узел Пирогова-Розенмюллера.

При прохождении грыжи формируются стенки бедренного канала:

Передняя - широкая фасция бедра;

Задняя - гребенчатая связка;

Латеральная - бедренная вена (рис. 22Б).

Длина бедренного канала составляет 1-3 см, в зависимости от уровня прикрепления верхнего рога серповидного края к паховой связке или к глубокой пластинке широкой фасции на гребенчатой мышце.

Снизу бедренный канал заканчивается подкожной щелью, ограниченной:

Латерально - серповидным краем;

Сверху и снизу - верхним и нижним рогами.

Подкожная щель прикрыта спереди решетчатой фасцией.

Бедренное кольцо может спереди и медиально огибать запирательная артерия при варианте ее отхождения от наружной подвздошной артерии или запирательной ветвью нижней надчревной артерии. Такой вариант отхождения запирательной артерии называется "венцом смерти", так как рассечение лакунарной связки вслепую при ущемленной бедренной грыже часто приводило к повреждению этого сосуда и смертельному кровотечению.

· Структура и механизм действия ферментов · Множественные формы ферментов · Медицинское значение · Практическое использование · Примечания · Литература ·

Активность ферментов определяется их трёхмерной структурой.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на этот субстрат, и кроме этого химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - «активный центр» - уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа.

В активном центре условно выделяют:

  • каталитический центр - непосредственно химически взаимодействующий с субстратом;
  • связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

  • очищает субстрат от водяной «шубы»
  • располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
  • подготавливает к реакции (к примеру, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (по факту происходит другая реакция), к примеру:

В отсутствие фермента:

  • А+В = АВ

В присутствии фермента:

  • А+Ф = АФ
  • АФ+В = АВФ
  • АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. К примеру, реакции синтеза биополимеров зачастую сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина , если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

Модель «ключ-замок»

В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата. Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. В тоже время, не смотря на то, что эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок». Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое даёт возможность ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин (протеаза, участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе. Неактивная форма транспортируется в желудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавин или гем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большая часть кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Зачастую конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи - важный способ поддержания гомеостаза (относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Ферме́нты , или энзи́мы (от лат.Fermentum - закваска) - обычно белковые молекулыилимолекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции вживыхсистемах.Реагентыв реакции, катализируемой ферментами, называютсясубстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазыфосфорилируеттолько фосфорилазу).

Ферментативная активность может регулироваться активаторамииингибиторами(активаторы - повышают, ингибиторы - понижают).

Белковые ферментысинтезируются нарибосомах, а РНК - в ядре.

Термины «фермент» и «энзим» давно используют как синонимы(первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной).

Наука о ферментах называется энзимологией , а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтомпри обсуждении механизмовпищеварения.

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, акрахмалпревращается всахарпод действием слюны. Однако механизм этих явлений был неизвестен .

В XIX в. Луи Пастер, изучая превращениеуглеводоввэтиловый спиртпод действиемдрожжей, пришёл к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках.

Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастерас одной стороны, иМ. БертлоиЮ. Либиха- с другой, о природе спиртового брожения. Собственноферментами (от лат.fermentum - закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч.ἐν- - в- и ζύμη - дрожжи, закваска) предложен в1876 годуВ. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин,амилаза). Через два года после смерти Л. Пастера в1897 годуЭ. Бухнер опубликовалработу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В1907 годуза эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 годуДж. Самнером. В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана.

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшимсплайсингРНК уинфузорииTetrahymena thermophila . Рибозимомоказался участок молекулы пре-рРНК Tetrahymena, кодируемыйинтрономвнехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов . Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществорганизма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активациипроцесса.Химическое равновесиепри этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокаяспецифичность-константа связываниянекоторых субстратов с белком может достигать 10 −10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 10 6 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз. См. также Каталитически совершенный фермент

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например,пепсинимеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

    КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза,алкогольдегидрогеназа.

    КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстратана другую. Среди трансфераз особо выделяюткиназы, переносящие фосфатную группу, как правило, с молекулыАТФ.

    КФ 3: Гидролазы , катализирующие гидролизхимических связей. Пример:эстеразы,пепсин,трипсин,амилаза,липопротеинлипаза.

    КФ 4: Лиазы , катализирующие разрыв химических связей без гидролизас образованиемдвойной связив одном из продуктов.

    КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.

    КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза АТФ. Пример:ДНК-полимераза.

Оксиредуктазы – это ферменты, катализирующие реакции окисления и восстановления, т.е. перенос электронов от донора к акцептору. Окисление представляет собой отнятие атомов водорода от субстрата, а восстановление это присоединение атомов водорода к акцептору.

К оксидоредуктазам относятся: дегидразы,оксидазы,оксигеназы, гидроксилазы, пероксидазы, каталазы. Например, ферменталкогольдегидрогеназакатализирует реакцию превращение спирта в альдегид.

Оксиредуктазы, переносящие атом водорода или электроны непосредственно на атомы кислорода, называются аэробными дегидрогеназами (оксидазами), тогда как оксидоредуктазы, переносящие атом водорода или электроны от одного компонентадыхательной цепи ферментов к другому, называются анаэробными дегидрогеназами. Распространённым вариантом окислительно-восстановительного процесса в клетках является окисление атомов водорода субстрата при участии оксиредуктаз. Оксидоредуктазы являются двухкомпонентными ферментами, у которых один и тот же кофермент может связываться с различными апоферментами. Например, многие оксидоредуктазы в качестве кофермента содержат НАД и НАДФ. В конце многочисленного класса оксиредуктаз (на 11 позиции) находятся ферменты типа каталаз и пероксидаз. Из всего количества белков пероксисом клеток до 40 процентов приходится на каталазу. Каталаза и пероксидаза расщепляют пероксид водорода в следующих реакциях: Н2О2 + Н2О2 = О2 + 2Н2О H2O2 + HO – R – OH = O=R=O + 2H2O Из данных уравнений сразу становятся видны как аналогия, так и существенное отличие между этими реакциями и ферментами. В этом смыслекаталазное расщепление пероксида водорода представляет собой особый случай пероксидазной реакции, когда пероксид водорода служит и в качестве субстрата, и акцептора в первой реакции.

Трансфера́зы - отдельный класс ферментов, катализирующих перенос функциональных групп и молекулярных остатков от одной молекулы к другой. Широко распространены в растительных и животных организмах, участвуют в превращениях углеводов, липидов, нуклеиновых и аминокислот.

Реакции, катализируемые трансферазами, в общем случае выглядят так:

A-X + B ↔ A + B-X.

Молекула A здесь выступает в качестве донора группы атомов (X ), а молекулаB является акцептором группы. Часто в качестве донора в подобных реакциях переноса выступает один изкоферментов. Многие из катализируемых трансферазами реакций являются обратимыми. Систематические названия ферментов класса образуются по схеме:

«донор:акцептор + группа + трансфераза ».

Или же используются чуть более общие названия, когда в название фермента включается имя либо донора, либо акцептора группы:

«донор + группа + трансфераза » или «акцептор + группа + трансфераза ».

Например, аспартатаминотрансферазакатализирует переносаминной группыс молекулыглутаминовой кислоты,катехол-О-метилтрансферазаосуществляет переносметильной группыS-аденозилметионина на бензольное кольцо различныхкатехоламинов, агистон-ацетилтрансферазапереносит ацетильную группу с ацетил-кофермента А нагистонв процессе активациитранскрипции.

Кроме того ферменты 7 подгруппытрансфераз, переносящие остаток фосфорной кислоты, используя в качестве донора фосфатной группыАТФ, часто называют также киназами; аминотрансферазы (6 подгруппа) часто называюттрансаминазами

Гидролазы (КФ3) - это классферментов, катализирующийгидролизковалентной связи. Общий вид реакции, катализируемой гидролазой выглядит следующим образом:

A–B + H 2 O → A–OH + B–H

Систематическое название гидролаз включает название расщепляемого субстрата с последующим добавлением -гидролаза . Однако, как правило в тривиальном названии слово гидролаза опускается и остаётся только суффикс «-аза».

Важнейшие представители

Эстеразы: нуклеаза, фосфодиэстераза, липаза, фосфотаза;

Гликозидазы: амилаза, лизоцим и др;

Протеазы: трипсин, химотрипсин, эластаза, тромбин, ренин и др;

Кислотный ангидрид-гидролаза (хеликаза, ГТФаза)

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию - присоединение по двойным связям.

Лиа́зы - отдельный класс ферментов, катализирующих реакции негидролитического и неокислительного разрыва различных химических связей (C-C , C-O , C-N , C-S и других) субстрата, обратимые реакции образования и разрыва двойных связей, сопровождающиеся отщеплением или присоединением групп атомов по её месту, а также образованием циклических структур.

В общем виде названия ферментов образуются по схеме «субстрат + лиаза». Однако чаще в названии учитывают подкласс фермента. Лиазы отличаются от других ферментов тем, что в катализируемых реакциях в одном направлении участвуют два субстрата, а в обратной реакции только один. В названии фермента присутствуют слова "декарбоксилаза" и "альдолаза" или "лиаза" (пируват-декарбоксилаза, оксалат-декарбоксилаза, оксалоацетат-декарбоксилаза, треонин-альдолаза, фенилсерин-альдолаза, изоцитрат-лиаза, аланин-лиаза, АТФ-цитрат-лиаза и др.), а для ферментов, катализирующих реакции отщепления воды от субстрата - "дегидратаза" (карбонат-дегидратаза, цитрат-дегидратаза, серин-дегидратаза и др.). В тех случаях, когда обнаружена только обратная реакция, или это направление в реакциях более существенно, в названии ферментов пристутствует слово "синтаза" (малат-синтаза, 2-изопропилмалат-синтаза, цитрат-синтаза, гидроксиметилглутарил-CoA-синтаза и др.).

Примеры: гистидиндекарбоксилаза,фумаратгидратаза.

Изомеразы - ферменты,катализирующиеструктурные превращенияизомеров(рацемизация или эпимеризация). Изомеразы катализируютреакции, подобные следующей: A → B, где B является изомером A.

В названии фермента присутствует слово "рацемаза " (аланин-рацемаза, метионин-рацемаза, гидроксипролин-рацемаза, лактат-рацемаза и др.), "эпимераза " (альдоза-1-эпимераза, рибулозофосфат-4-эпимераза, УДФ-глюкуронат-4-эпимераза и др.), "изомераза " (рибозофосфат-изомераза, ксилозоизомераза, глюкозаминфосфат-изомераза, эноил-СоА изомераза и др.), "мутаза " (фосфоглицерат-мутаза, метиласпартат-мутаза, фосфоглюкомутазаи др.).

Лигаза (лат.ligāre - сшивать, соединять) - фермент,катализирующийсоединение двух молекул с образованием новой химической связи (лигирование ). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

Лигазы относятся к классу ферментов EC 6.

В молекулярной биологии лигазы подкласса 6.5 классифицируют на РНК-лигазы и ДНК-лигазы.

ДНК-лигазы

ДНК-лигаза, осуществляющая репарациюДНК

ДНК-лигазы - ферменты(EC 6.5.1.1),катализирующиековалентное сшиваниецепейДНКв дуплексе прирепликации,репарацииирекомбинации. Они образуют фосфодиэфирные мостики между 5"-фосфорильной и 3"-гидроксильной группами соседнихдезоксинуклеотидовв местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергиюгидролизапирофосфорильной связиАТФ. Один из самых распространённых коммерчески доступных ферментов - ДНК-лигазабактериофагаТ4.

ДНК-лигазы млекопитающих

У млекопитающих классифицируют три основных типа ДНК-лигаз.

    ДНК-лигаза I лигирует фрагменты Оказакив ходерепликацииотстающей цепи ДНК и участвует в эксцизионной репарации .

    ДНК-лигаза III в комплексе с белком XRCC1участвует вэксцизионной репарациии в рекомбинации.

    ДНК-лигаза IV в комплексе с XRCC4катализирует окончательный этап негомологичного соединения (non-homologous end joining - NHEJ) двунитевых разрывов ДНК. Также требуется для V(D)J рекомбинации геновиммуноглобулинов.

Ранее выделяли ещё один тип лигаз - ДНК-лигазу II, которая позднее была признана артефактом выделения белков, а именно продуктом протеолиза ДНК-лигазы III .

Соглашения о наименовании ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата(например , лактаза- фермент, участвующий в превращениилактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например, по оптимальномуpH(щелочная фосфатаза) или локализации в клетке (мембраннаяАТФаза).

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой .

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс.Третичная структурабелков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп егомолекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данныйсубстрат, а также химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - «активный центр» - уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа .

В активном центре условно выделяют :

    каталитический центр - непосредственно химически взаимодействующий с субстратом;

    связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторовили ионов металлов.

Фермент, соединяясь с субстратом:

    очищает субстрат от водяной «шубы»

    располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом

    подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

В присутствии фермента:

  • АФ+В = АВФ

    АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеровчасто сопрягаются с реакциейгидролизаАТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидазатрипсинразрывает пептидную связь только послеаргининаилилизина, если за ними не следует пролин, апепсингораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

В 1890 г. Эмиль Фишерпредположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата . Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошландпредложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин(протеаза, участвующая впищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется вподжелудочной железе. Неактивная форма транспортируется вжелудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавинилигем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи- важный способ поддержаниягомеостаза(относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Множественные формы ферментов

Множественные формы ферментов можно разделить на две категории:

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

    Органные - ферменты гликолизав печени и мышцах.

    Клеточные - малатдегидрогеназацитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

    Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа- 4 субъединицы 2 типов).

    Мутантные - образуются в результате единичной мутации гена.

    Аллоферменты - кодируются разными аллелями одного и того же гена.

Собственно множественные формы (истинные) - это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомахони подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Медицинское значение

Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина.Фенилкетонуриясвязана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

Практическое использование

Ферменты широко используются в народном хозяйстве - пищевой, текстильной промышленности, в фармакологии и медицине. Большинство лекарств влияют на течение ферментативных процессов в организме, запуская или приостанавливая те или иные реакции.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Ферменты и витамины

Роль биологических молекул, входящих в состав организма.

Лекция № 7

(2 часа)

Общая характеристика ферментов

Строение ферментов

Основные этапы ферментативного катализа

Свойства ферментов

Номенклатура и классификация ферментов

Ингибиторы и активаторы ферментов

Классификация витаминов

Жирорастворимые витамины

Витамины, растворимые в воде

Витамины группы В

Общие признаки ферментов и катализаторов неорганической природы:

Катализируют только энергетически возможные реакции,

Не изменяют направление реакции,

Не расходуются в процессе реакции,

Не участвуют в образовании продуктов реакции.

Отличия ферментов от небиологических катализаторов :

Белковое строение;

Высокая чувствительность к физико-химическим факторам среды, работают в более мягких условиях (Р атмосферное, 30-40 о С, рН близкое к нейтральному);

Высокая чувствительность к химическим реагентам ;

Высокая эффективность действия (могут ускорять реакцию в 10 8 -10 12 раз; одна молекула Ф может катализировать 1000-1000000 молекул субстрата за 1 мин);

Высокая избирательность Ф к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия);

Активность Ф регулируется особыми механизмами.

По строению ферменты делятся на простые (однокомпонентные) и сложные (двукомпонентные). Простой состоит только из белковой части, сложный (холофермент ) - из белковой и небелковой частей. Белковая часть - апофермент , небелковая - кофермент (витамины В 1 , В 2 , В 5 , В 6 , Н, Q и др.). Отдельно апофермент и кофермент не обладают каталитической активностью. Участок на поверхности молекулы фермента, который взаимодействует с молекулой субстрата - активный центр.

Активный центр образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных сближенных полипептидных цепей . Образуется на уровне третичной структуры белка-фермента. В его пределах различают субстратный (адсорбционный) центр и каталитический центр. Кроме активного центра встречаются особые функциональные участки - аллостерические (регуляторные) центры.

Каталитический центр - это область активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. КЦ простых ферментов - это сочетание нескольких аминокислотных остатков, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи (серин , цистеин , тирозин , гистидин , аргинин , асп. и глут. кислоты). КЦ сложного белка устроен сложнее, т.к. участвует простетическая группа фермента - кофермент (водорастворимые витамины и жирорастворимый витамин K).


Субстратный (адсорбционный) цент р - это участок активного центра фермента, на котором происходит сорбция (связывание) молекулы субстрата. СЦ формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная функция СЦ - связывание молекулы субстрата и ее передача каталитическому центру в наиболее удобном для него положении.

Аллостерический центр ("имеющий иную пространственную структуру") - участок молекулы фермента вне его активного центра, который обратимо связывается с каким-либо веществом. Такое связывание приводит к изменению конформации молекулы фермента и его активности. Активный центр либо начинает работать быстрее, либо медленнее. Соответственно такие вещества называют аллостерическими активаторами либо аллостерическими ингибиторами.

Аллостерические центры найдены не у всех ферментов. Они есть у ферментов, работа которых изменяется под действием гормонов, медиаторов и других биологически активных веществ.