Что такое липиды их химический состав. Липиды и углеводы


  1. Функции липопротеинов в крови и плазме крови
  2. Разница между липопротеинами и липопротеидами
  3. Нарушение транспорта липидов

Липопротеины – это комплекс транспортных форм липидов (жиров и жироподобных веществ). Если не углубляться в химические термины, то в нестрогом смысле липопротеины – это сложные соединения, создавшиеся на основе жиров и белков с гидрофобными и электростатическими взаимодействиями.

Липиды не растворяются в воде, по сути являются молекулами с гидрофобным ядром, потому не могут переноситься кровью в чистом виде. Жир синтезируется в тканях организма – печени, кишечника, но для его транспорта необходимо включение жиров с помощью белков в состав липопротеинов.

Наружный слой или оболочка липопротеина состоит из белков, холестерина и фосфолипидов; она гидрофильная, поэтому липопротеин легко связывается с плазмой крови. Внутренняя часть или ядро состоит из эфиров холестерина, триглицеридов, высших жирных кислот и витаминов.

Липопротеины в стабильной концентрации поддерживают синтез и секрецию жировых и апобелковых компонентов (апобелками называют белки-стабилизаторы в составе липопротеинов).

Классификация липопротеинов проводится по разным основаниям с учетом химических, биологических и физических свойств и различий. Самая распространенная и имеющая практическое применение в медицине классификация основана на выявлении соотношения липидов и белков и, как следствие, плотности. Плотность определяется по результатам ультрацентрифугирования.

По плотности и поведению в гравитационном поле выделяют следующие липопротеиновые классы:

  1. Хиломикроны - самые легкие и крупные частицы; образуются в клетках кишечника и имеют в составе до 90 процентов липидов;
  2. Липопротеины очень низкой плотности; образуются в печени из углеводов;
  3. Липопротеины низкой плотности; образуются в русле крови из липопротеинов очень низкой плотности через стадию липопротеинов промежуточной плотности.
  4. Липопротеины высокой плотности – самые мелкие частицы; образуются в печени и имеют в составе до 80 процентов белков.
  5. Химический состав всем липопротеинов одинаков; разнятся пропорции – соотношения составляющих липопротеин веществ относительно друг друга.

По другой классификации липопротеины делятся на свободные, которые растворяются в воде, и несвободные, которые в воде не растворяются. Липопротеины плазмы, сыворотки крови растворимы в воде. Липопротеины мембранных стенок клеток, нервных волокон нерастворимы в воде.

Биохимический анализ крови назначается для сбора сведений об обмене веществ в организме, качестве работы внутренних органов и систем человека, уровне макроэлементов – белков, жиров, углеводов. Биохимический анализ делают в рамках медицинского обследования на скрытые заболевания и патологии. Он позволяет выявить проблему еще до появления первых симптомов болезни.

Один из рассматриваемых параметров биохимического анализа крови – липопротеины различной плотности – компоненты жирового обмена.

Если выявлено, что в крови повышено содержание липопротеинов низкой плотности, это означает, что в организме есть «плохой» холестерин и требуется дополнительное обследование на предмет выявления атеросклероза.

По показателям липопротеинов различной плотности выводят значение содержания в крови общего холестерина. Для оценки состояния сосудов важнее показатели отдельного взятых липопротеинов низкой плотности, чем общего холестерина.

Чтобы результаты биохимического анализа крови были достоверными, необходимо за 24 часа прекратить прием алкоголя, сильнодействующих лекарственных средств, за 12 часов не есть ничего и не пить подслащенные напитки, за 6 часов – не курить и не пить ничего, кроме воды.

Результаты анализа могут сильно отличаться от номы при отсутствии заболеваний внутренних органов на фоне беременности, в течение полутора-двух месяцев после родов, перенесенного недавнего инфекционного заболевания, сильного отравления, острой респираторной инфекции. В этом случае показана повторная сдача анализа после устранения препятствующих факторов.

Для получения более развернутого результата по показателям содержания липопротеинов в рамках диагностики сердечно-сосудистых заболеваний назначают липидограмму крови. Она показывает, сколько и какие липопротеины содержатся в крови, а также говорит об уровне холестерина и триглицеридов.

Функции липопротеинов в крови и плазме крови

Общая функция всех липопротеинов – транспорт липидов. Они переносят насыщенные мононенасыщенные жирные кислоты для получения их них энергии; полиненасыщенные жирные кислоты для синтеза гормонов – стероидов, эйкозаноидов; холестерин и фосфолипиды для использования их в качестве важного составного элемента клеточных мембран.

Поступающие жиры и углеводы обязательно должны расщепляться и транспортироваться по системам организма для усвоения или накопления.

  • Хиломикроны переносят экзогенный жир из кишечника в слои разной ткани, преимущественно в жировую ткань и экзогенный холестерин из кишечника в печень.
  • Липопротеины очень низкой плотности переносят эндогенный жир из печени в жировую ткань.
  • Липопротеины низкой плотности транспортируют эндогенный холестерин в ткани.
  • Липопротеины высокой плотности удаляют (выводят) холестерин из тканей в печень, из клеток печени холестерин выводится с желчью.

Липопротеины очень низкой и низкой плотности считаются атерогенными, то есть вызывающими при повышении их концентрации в крови атеросклероз. При атеросклерозе излишек жира, «плохого» холестерина выстилают сосудистые стенки изнутри, слипаются и прикрепляются к стенкам сосудов. Это приводит к повышение кровяного давления за счет сужения сосудистого просвета, снижению упругости стенок сосудов, образованию тромбов.

Эндогенные жиры синтезируются в организме, экзогенные жиры организм получает с пищей.

Разница между липопротеинами и липопротеидами

Липопротеины и липопротеиды – разные варианты написания одного и того же слова, обозначающего транспортную форму липидов. Оба варианта являются правильными, но чаще встречается написание «липопротеины».

Нарушение транспорта липидов

При нарушениях транспорта липидов и липидного обмена снижается энергетический потенциал организма, ухудшается терморегуляционная способность. Помимо этого, ухудшается передача нервных импульсов, снижается скорость ферментивных реакций.

Нарушение липидного обмена происходит либо на стадии образования, либо на стадии утилизации липопротеинов: в первом случае говорят о гипопротеинемии, во втором – о гиперпротеинемии.

Первичные причины нарушения липидного обмена – генетическое мутации. Вторичные причины – цирроз (дистрофия с последующим некрозом тканей печени), гипертиреоз (гиперфункция щитовидной железы), пиелонефрит или почечная недостаточность, сахарный диабет, желчекаменная болезнь, ожирение.

Временные нарушения вызываются приемом некоторых медицинских препаратов и их групп: инсулин, фенитоин, глюкокортикоиды, - а также большого количества алкоголя.

Вопрос 1. Какие органические вещества входят в состав клетки?

Однозначной классификации органических веществ, входящих в состав клетки, не су­ществует, поскольку они очень разнообразны по своим размерам, строению и функциям. Наиболее распространено деление всех органи­ческих соединений на низкомолекулярные (липиды, аминокислоты, нуклеотиды, моноса­хариды, органические кислоты) и высокомо­лекулярные, или биополимеры. Биополиме­ры, в свою очередь, можно подразделить на гомополимеры (регулярные полимеры) и ге­терополимеры (нерегулярные полимеры). Гомополимеры состоят из мономеров (более мелких молекул) одного типа. Это, например, гликоген, крахмал и целлюлоза, образованные молекулами глюкозы. Мономеры гетерополи­меров отличаются друг от друга. Например, белки состоят из 20 типов аминокислот, а ДНК — из 4 типов нуклеотидов.

Вопрос 2. Что такое липиды? Опишите их хи­мический состав.

Липиды — гидрофобные органические со­единения, нерастворимые в воде, но хорошо растворимые в органических веществах (эфи­ре, бензине, хлороформе). Липиды широко представлены в живой природе и играют ог­ромную роль в жизнедеятельности клетки. Их можно подразделить на три основные группы: нейтральные жиры, воски и жироподобные ве­щества. По химической структуре нейтраль­ные жиры представляют собой сложные соеди­нения трехатомного спирта глицерина и остат­ков жирных кислот. Если в этих жирных кислотах много двойных -СН=СН- связей, то липид жидкий (подсолнечное масло и дру­гие растительные жиры, рыбий жир), а если двойных связей мало — твердый (сливочное масло, большинство других животных жиров). К жироподобным веществам относятся, на­пример, фосфолипиды. По своей структуре они сходны с жирами, но один или два остатка жирных кислот в их молекуле замещены ос­татком фосфорной кислоты.

Вопрос 3. Какова роль липидов в обеспечении жизнедеятельности организма?

Нейтральные жиры являются чрезвычай­но важным источником энергии в организме и, кроме того, источником метаболической во­ды. Иными словами, при распаде жиров выде­ляется не только энергия, но и вода, что осо­бенно важно для обитателей пустынь и живот­ных, впадающих в длительную спячку. Жиры откладываются в основном в жировой ткани, которая служит энергетическим депо, предо­храняет организм от потери тепла и выполня­ет защитную функцию. Так, в полости тела формируются защитные жировые прокладки между внутренними органами. Подкожная жировая клетчатка особенно развита у китов и тюленей, постоянно находящихся в холодной воде. Сальные железы кожи выделяют секрет для смазки шерсти млекопитающих; у птиц аналогичную функцию выполняет копчиковая железа. Воск пчел служит для постройки сот. У растений, существующих в условиях недос­татка воды, часто развита восковая кутикула (белесый налет на поверхности листьев, стеб­лей, плодов). Она защищает растение от избы­точного испарения, ультрафиолетового излу­чения и механических повреждений.

Вопрос 4. В чем заключается биологическое значение жироподобных веществ?

Представители группы жироподобных ве­ществ — фосфолипиды формируют основу всех биологических мембран. Это чрезвычай­но важная функция, и ни одна клетка не мо­жет существовать без достаточного количества фосфолипидов. Принципиальным моментом является наличие в фосфолипидах мембран «гибких» остатков жирных кислот с двойными связями (имеют преимущественно раститель­ное происхождение). К жироподобным веще­ствам относятся также некоторые витамины (A, D, Е, К), а также холестерин. Название «холестерин» происходит от латинского слова «холео» — «желчь», поскольку из холестери­на в клетках печени синтезируются желчные кислоты, необходимые для нормального пере­варивания жиров. В надпочечниках, половых железах и плаценте из холестерина образуют­ся стероидные гормоны.

Вопрос 5. Вспомните из курса «Человек и его здоровье» функции витаминов, симптомы их недо­статочности.

Витамины — это необходимые нашему организму органические вещества, имеющие относительно небольшую молекулу. Они явля­ются незаменимыми компонентами пищи (наш организм синтезировать витамины не способен); при их дефиците возникают харак­терные заболевания (авитаминозы). Каждый витамин выполняет уникальную функцию. Так, витамины А и Е защищают мембраны клеток от окисления, кроме того, витамин А необходим для нормальной работы сетчатки глаза. Первым симптомом дефицита витамина А является ухудшение зрения (особенно в су­мерках). Под управлением витамина D каль­ций всасывается в кишечнике, а затем откла­дывается в костях (симптом авитаминоза — рахит). Витамин К необходим для нормально­го свертывания крови; витамин С — для фор­мирования соединительной ткани. Отсутствие витамина С в пище приводит к нарушению структуры стенок сосудов (возникают мелкие кровотечения) и распуханию суставов. Вита­мины группы В незаменимы для нормальной работы многих ферментов нашего организ­ма, в частности управляющих распадом глю­козы (B1), обменом аминокислот (В 2) и т. д. Витамин В 12 необходим для нормального син­теза гемоглобина и созревания эритроцитов.

Липиды Элементарный химический состав: атомы С, Н,О.
Под термином «липиды» объединяют
жиры и жироподобные вещества с
различной структурой, но общими
свойствами. Они нерастворимы в воде
(гидрофобны), но хорошо растворяются в
органических растворителях: эфире,
ацетоне, хлороформе и других.
Это: воски, жёлчные кислоты,
стероидные липиды (холестерин,
витамин Д), витамины К, Е, А,
каротиноиды, ростовые вещества
растений – гибберелины.
Содержание.
В клетке от 5 %-15%-90% от сухой массы вещества.

Жиры (триглицериды) – сложные
эфиры трехатомного спирта глицерина
и высокомолекулярных жирных
кислот: насыщенных (предельных)
пальмитиновой, стеариновой, и
ненасыщенных (непредельных) –
содержащих двойные связи - олеиновой,
линолевой, линоленовой и
арахидоновой.
Пальмитиновая кислота – С15Н31СООН;
Насыщенные жирные кислоты
Стеариновая кислота – С17Н35СООН;
Олеиновая кислота – С17Н33СООН; арахидоновая – С19Н31СООН;
Линолевая кислота – С17Н31СООН; линоленовая – С17Н29СООН.

Жиры

Жирные (карбоновые) кислоты – это небольшие молекулы с
длинной цепью, состоящей из 15-24 атомов углерода, имеющие
карбоксильную группу (-СООН) на одном из концов.
Если в состав жиров входят насыщенные жирные кислоты пальмитиновая или стеариновая, то при комнатной температуре они
имеют твердую консистенцию. Жиры с ненасыщенными жирными
кислотами – чаще всего олеиновая (СН3(СН2)7СН=СН(СН2)7СООН) жидкие (масла).
Двойная связь в непредельных жирных кислотах определяет
свойства жиров, значительно понижая температуру плавления. Для
сравнения: у стеариновой кислоты Тпл = 69,6 0С, а у олеиновой – Тпл
= 13,4 0С.
Линолевая, линоленовая и арахидоновая кислоты не синтезируются
в организме у млекопитающих, поэтому являются незаменимыми.
Их природным источником являются растительные масла.
Линолевая кислота служит предшественницей для биосинтеза
линоленовой и арахидоновой кислот. Арахидоновая кислота предшественница в синтезе простагландинов.

Жиры

Из формулы жира видно, что его молекула,
с одной стороны, содержит остаток
глицерина – вещества, хорошо
растворимого в воде, а с другой стороны –
остатки жирных кислот, практически
нерастворимых в воде. При нанесении
капли жира на поверхность воды в сторону
воды обращается глицериновая часть
молекулы, а из воды «торчат» вверх
цепочки жирных кислот.
Остаток
глицерина
Остатки
жирных
кислот

Липиды

В воде жиры поворачиваются к ее поверхности глицериновой частью
молекулы, а наружу «торчат» гидрофобные «хвосты» жирных кислот.
Такая ориентация по отношению к воде играет очень важную роль.
Билипидный слой

Липиды

Два слоя фосфолипидов (где один остаток
жирной кислоты заменен на остаток
фосфорной) образуют мембрану клеток и
препятствует смешиванию содержимого
клетки с окружающей средой.
Благодаря наличию в фосфолипидах остатка
фосфорной кислоты, гидрофильные свойства
у них выражены сильнее, в связи с чем
фосфолипиды способны к образованию в
воде двухслойных структур – билипидного
слоя.

Классификация липидов

Функции липидов:

1. энергетическая, при окислении липиды обеспечивают 25-30%
всей энергии, необходимой организму.
2. теплоизоляционная (у кита слой подкожного жира достигает 1
м, у других млекопитающих имеется «бурый» жир, богатый
митохондриями и железосодержащим белком);
3. источник метаболической (эндогенной) воды для многих
пустынных животных – песчанок, тушканчиков, верблюдов;
4. резервная, жир накапливается в семенах многих растений, в
жировой ткани у животных в подкожной жировой клетчатке у
млекопитающих или жировом теле у насекомых.
5. структурная - фосфолипиды и холестерол входят в состав всех
мембранных структур в клетке, определяют проницаемость
мембран для ряда веществ.
6. Жёлчные кислоты (например, холевая кислота) способствуют
эмульгированию жиров.

10. Функции липидов:

7. регуляторная, некоторые липиды являются предшественниками
ряда витаминов (А. D, Е, К) и гормонов, например, гормоны коры
надпочечников (кортикостерон, кортизол) и половых желез
(тестостерон, эстрадиол).
8. механическая защита (околопочечная капсула, жировая подушка
около глаз).
9. восковой налет на листьях растений предохраняет от избыточного
испарения, иссушения, воздействия низких температур и солнечных
лучей. Триглицериды и воски образуют также водоотталкивающую
пленку на коже, перьях, шерсти.
10. Из ненасыщенных жирных кислот в организме человека и
животных синтезируются такие регуляторные вещества, как
простагландины. Они регулируют работу гладкой мускулатуры и
центра терморегуляции. При усилении синтеза простагландинов
центр терморегуляции возбуждается, что приводит к повышению
температуры тела.

11.

Домашнее задание:
Пасечник - § 10,
Рувинский - § 6

Вопрос 1. Какие органические вещества входят в состав клетки?
Органические соединения составляют в среднем 10% массы клетки живого организма. Однозначной классификации органических веществ, входящих в состав клетки, не существует, поскольку они очень разнообразны по своим размерам, строению и функциям. Наиболее распространено деление всех органических соединений на низкомолекулярные (липиды, аминокислоты, нуклеотиды, моносахариды, органические кислоты) и,высокомолекулярные, или биополимеры. Биополимеры, в свою очередь, можно подразделить на гомополимеры (регулярные полимеры) и гетерополимеры (нерегулярные полимеры). Гомополимеры состоят из мономеров (более мелких молекул) одного типа. Это, например, гликоген, крахмал и целлюлоза, образованные молекулами глюкозы. Мономеры гетерополиморов отличаются друг от друга. Например, белки (составляют 10-18% от общей массы клетки) состоят из 20 типов аминокислот, а ДНК - из 4 типов нуклеотидов.
К органическим полимерным молекулам относят белки, жиры, углеводы, нуклеиновые кислоты. В различные типы клеток входит неодинаковое количество тех или иных органических соединений. Например, в растительных клетках преобладают сложные углеводы - полисахариды; в животных - больше белков и жиров. Тем не менее каждая группа органических веществ в любом типе клеток выполняет сходные функции.

Вопрос 2. Что такое липиды? Опишите их химический состав.
Липиды - гидрофобные органические соединения, нерастворимые в воде, но хорошо растворимые в органических веществах (эфире, бензине, хлороформе). Липиды широко представлены в живой природе и играют огромную роль в жизнедеятельности клетки. Их можно подразделить на три основные группы: нейтральные жиры, воски и жироподобные вещества. По химической структуре нейтральные жиры представляют собой сложные соединения трехатомного спирта глицерина и остатков жирных кислот. Если в этих жирных кислотах много двойных -СН=СН- связей, то липид жидкий (подсолнечное масло и другие растительные жиры, рыбий жир), а если двойных связей мало - твердый (сливочное масло, большинство других животных жиров). К жироподобным веществам относятся, например, фосфолипиды. По своей структуре они сходны с жирами, но один или два остатка жирных кислот в их молекуле замещены остатком фосфорной кислоты. В клетках есть и другие сложные гидрофобные жироподобные вещества, называемые моноидами, например холестерин.

Вопрос 3. Какова роль липидов в обеспечении жизнедеятельности организма?
Нейтральные жиры являются чрезвычайно важным источником энергии в организме и, кроме того, источником метаболической воды. Иными словами, при распаде жиров выделяется не только энергия, но и вода, что особенно важно для обитателей пустынь и животных, впадающих в длительную спячку. Жиры откладываются в основном в жировой ткани, которая служит энергетическим депо, предохраняет организм от потери тепла и выполняет защитную функцию. Так, в полости тела формируются защитные жировые прокладки между внутренними органами. Подкожная жировая клетчатка особенно развита у китов и тюленей, постоянно находящихся в холодной воде. Сальные железы кожи выделяют секрет для смазки шерсти млекопитающих; у птиц аналогичную функцию выполняет копчиковая железа. Воск пчел служит для постройки сот. У растений, существующих в условиях недостатка воды, часто развита восковая кутикула (белесый налет на поверхности листьев, стеблей, плодов). защищает растение от избыточного испарения, ультрафиолетового излучения и механических повреждений. Таким образом, функции липидов в клетке разнообразны:
структурная (принимают участие в построении мембраны);
энергетическая (при распаде в организме 1 г жира выделяется 9,2 ккал энергии - в 2,5 раза больше, чем при распаде того же количества углеводов);
защитная (от потери тепла, механических повреждений);
жир - источник эндогенной воды (при окислении 10 г жира выделяется 11 г воды);
регуляция обмена веществ (например, стероидные гормоны - кортикостерон и др.).

Вопрос 4. В чем заключается биологическое значение жироподобных веществ?
Представители группы жироподобных веществ - фосфолипиды. формируют основу всех биологических мембран. Это чрезвычайно важная функция, и ни одна клетка не может существовать без достаточного количества фосфолипидов. Принципиальным моментом является наличие в фосфолипидах мембран «гибких» остатков жирных кислот с двойными связями (имеют преимущественно растительное происхождение). К жироподобным веществам относятся также некоторые витамины (А, О, Е, К), а также холестерин (называемые моноидами). Название «холестерин» происходит от латинского слова «холео» - «желчь», поскольку из холестерина в клетках печени синтезируются желчные кислоты, необходимые для нормального переваривания жиров. В надпочечниках, половых железах и плаценте из холестерина образуются стероидные гормоны. Следовательно, этим веществам свойственна и функция регуляции обменных процессов.

Вопрос 5. Вспомните из курса «Человек и его здоровье» функции витаминов, симптомы их недостаточности.
Витамины - это необходимые нашему организму органические вещества, имеющие относительно небольшую молекулу. Они являются незаменимыми компонентами пищи (наш организм синтезировать витамины не способен, кроме витамина D); при их дефиците возникают характерные заболевания (авитаминозы). Каждый витамин выполняет уникальную функцию. Так, витамины А и Е защищают мембраны клеток от окисления, кроме того, витамин А необходим для нормальной работы сетчатки глаза, оказывает влияние на рост человека, улучшает состояние кожи, способствует сопротивлению организма инфекции, обеспечивает рост и развитие эпителиальных клеток. Первым симптомом дефицита витамина А является ухудшение зрения (особенно в сумерках). Под управлением витамина D кальций всасывается в кишечнике, а затем откладывается в костях (симптом авитаминоза - рахит). Витамин К необходим для нормального свертывания кро-ви, он служит для образования протромбина - белка плазмы крови, являющегося предшественником тромбина, превращающего фибриноген (белок плазмы крови) в фибрин - белок,. способствующими формированию сгустка крови; витамин С - для формирования соединительной ткани, помогает при варикозном расширении вен и геморрое. Отсутствие витамина С в пище приводит к нарушению структуры стенок сосудов (возникают мелкие кровотечения) и распуханию суставов. Витамины группы В незаменимы для нормальной работы многих ферментов нашего организма, в частности управляющих распадом глюкозы (В 1), обменом аминокислот (В 2) и т. д. Витамин В 12 необходим для нормального синтеза гемоглобина и созревания эритроцитов. Витамин Н - биотин необходим для синтеза высших жирных кислот, а также щавелево-уксусной кислоты - продукта углеводного обмена.

— это группа органических веществ, входящих в состав живых организмов и характеризуются нерастворимостью в воде и растворимости в неполярных растворителях, таких как диетилетер, хлороформ и бензол. Это определение объединяет большое количество соединений различных по химической природе, в частности таких как жирные кислоты, воски, фосфолипиды, стероиды и многие другие. Также разнообразны и функции липидов в живых организмах: жиры являются формой запасания энергии, фосфолипиды и стероиды входят в состав биологических мембран, другие липиды, содержащиеся в клетках в меньших количествах могут быть коферментами, светопоглощающего пигментами, переносчиками электронов, гормонами, вторичными посредниками время внутриклеточной передачи сигнала, гидрофобными «якорями», которые содержат белки у мембран, шаперонами, способствующих Фолдинг белков, эмульгаторами в желудочно-кишечном тракте.

Люди и другие животные имеют специальные биохимические пути для биосинтеза и расщепления липидов, однако некоторые из этих веществ являются незаменимыми и должны поступать в организм с пищей, например ω-3 и ω-6 ненасыщенные жирные кислоты.

Классификация липидов

Традиционно липиды делятся на простые (эфиры жирных кислот со спиртами) и сложные (которые кроме остатка жирной кислоты и спирта содержат еще дополнительные группы: углеводороды, фосфатные и другие). К первой группе относятся в частности ацилглицеролы и воски, ко второй — фосфолипиды, гликолипиды, также сюда можно отнести липопротеины. Эта классификация не охватывает все разнообразие липидов, поэтому часть из них выделят в отдельную группу предшественников и производных липидов (например жирные кислоты, стеролы, некоторые альдегиды и т.д.).

Современная номенклатура и классификация липидов, используется в исследованиях в области липидомикы, основывается на разделении их на восемь основных групп, каждая из которых сокращенно обозначается двумя английскими буквами:

  • Жирные кислоты (FA)
  • Глицеролипидов (GL)
  • Глицерофосфолипиды (GP)
  • Сфинголипиды (SP);
  • Стероидные липиды (ST);
  • Пренольни липиды (PR)
  • Сахаролипиды (SL)
  • Поликетиды (PK).

Каждая из групп делится на отдельные подгруппы, обозначаемые комбинацией из двух цифр.

Возможна также классификация липидов на основе их биологических функций, в таком случае можно выделить такие группы как: запасные, структурные, сигнальные липиды, кофакторы, пигменты и тому подобное.

Характеристика основных классов липидов

Жирные кислоты

Жирные кислоты — это карбоновые кислоты, молекулы которых содержат от четырех до тридцати шести атомов углерода. В составе живых организмов было обнаружено более двухсот соединений этого класса, однако широкое распространение получили около двадцати. Молекулы всех природных жирных кислот содержат четное количество атомов углерода (это связано с особенностями биосинтеза, который происходит путем добавления двокарбонових единиц), преимущественно от 12 до 24. Их углеводородные цепочки обычно неразветвленные, изредка они могут содержать трикарбонови циклы, гидроксильные группы или ответвления.

В зависимости от наличия двойных связей между атомами углерода все жирные кислоты делятся на насыщенные, которые их содержат, и ненасичнени, в состав которых входят двойные связи. Наиболее распространенными из насыщенных жирных кислот в организме человека является пальмитиновая (C 16) и стеариновая (C 18).

Ненасыщенные жирные кислоты встречаются в живых организмах чаще насыщенные (около 3/4 общего содержания). В большинстве из них наблюдается определенная закономерность в размещении двойных связей: если такая связь один, то он преимущественно находится между 9-ым и 10-ым атомами углерода, дополнительные двойные связи в основном появляются в позициях между 12- тем и 13-м и между 15-ым и 16-ым карбоном (исключением из этого правила является арахидоновая кислота). Двойные связи в природных полиненасыщенных жирных кислотах всегда изолированы, то есть между ними содержится хотя бы одна метиленовая группа (-CH = CH-CH 2 -CH = CH-). Почти во всех ненасыщенных жирных кислот, встречающихся в живых организмах, двойные связи находятся в цис конфигурации. К наиболее распространенным ненасыщенных жирных кислот относятся олеиновая, линолевая, линоленовая и арахидоновая.

Наличие цис -Двойной связей влияет на форму молекулы жирных кислот (делает ее менее компактной), а соответственно и на физические свойства этих веществ: ненасыщенные жирные кислоты в цис -форме имеют низкую температуру плавления чем соответствующие транс изомера и насыщенные жирные кислоты.

Жирные кислоты встречаются в живых организмах преимущественно как остатки в составе других липидов. Однако в небольших количествах они могут быть обнаружены и в свободной форме. Производные жирных кислот эйкозаноиды играют важную роль как сигнальные соединения.

Ацилглицериды

Ацилглицериды (ацилглицеролы, глицериды) — это эфиры трехатомных спирта глицерина и жирных кислот. В зависимости от количества эстерифицированные гидроксильных групп в молекуле глицерина они делятся на триглицериды (триацилглицеролов), диглицериды (диацилглицеролы) и моноглицериды (моноацилглицеролы). Наиболее распространенные триглицериды, которые еще имеют эмпирическую название нейтральные жиры или просто жиры.

Жиры могут быть простыми, то есть содержать три одинаковые остатки жирных кислот, например тристеарин или триолеин, но чаще встречаются смешанные жиры, содержащие остатки различных жирных кислот, например 1-пальмито-2-олеолинолен. Физические свойства триглицеридов зависят от жирнокислотного состава: чем больше они содержат остатков длинных ненасыщенных жирных кислот, тем больше в них температура плавления, и наоборот — чем больше коротких ненасыщенных, тем она меньше. В общем растительные жиры (масла) содержат около 95% ненасыщенных жирных кислот, и поэтому при комнатной температуре находятся в жидком агрегатном состоянии. Животные жиры, наоборот содержат в основном насыщенные жирные кислоты (например коровье масло состоит в основном из тристеарин), поэтому при комнатной температуре твердые.

Основной функцией ацилглицеридив является то, что они служат для запасания энергии, и является наиболее энергоемких топливом клетки.

Воски

Воски — это эфиры жирных кислот и высших одноатомных или двухатомных спиртов, с числом атомов углерода от 16 до 30. Часто в составе восков встречается цетиловый (C 16 H 33 OH) и мирициловий (C 30 H 61 OH) спирты. К природным восков животного происхождения принадлежит пчелиный воск, спермацет, ланолин, все они кроме эфиров содержат еще некоторое количество свободных жирных кислот и спиртов, а также углеводородов с числом атомов углерода 21-35.

Хотя некоторые виды, например определенные планктонные микроорганизмы, используют воски как форму запасания энергии, обычно они выполняют другие функции, в частности обеспечения водонепроницаемости покровов как животных так и растений.

Стероиды

Стероиды — это группа природных липидов, содержащих в своем составе циклопентанпергидрофенантренове ядро. В частности к этому классу соединений относятся спирты с гидроксильной группой в третьем положении — стеролы (стерины) и их эфиры с жирными кислотами — стеридов. Самым распространенным Стеролы у животных есть холестерол, что в неэстерифицированных составе входит в состав клеточных мембран.

Стероиды выполняют множество важных функций у разных организмов: часть из них являются гормонами (например, половые гормоны, и гормоны коры надпочечников у человека), витаминами (витамин D), эмульгаторами (желчные кислоты) и др.

Фосфолипиды

Основной группой структурных липидов фосфолипиды, которые в зависимости от спирта, входящего в их состав делятся на глицерофосфолипиды и сфингофосфолипиды. Общим признаком фосфолипидов является их амфифильность: они гидрофильную и гидрофобную части. Такое строение позволяет им образовывать в водной среде мицеллы и бислои, последние составляют основу биологических мембран.

Глицерофосфолипиды

Глицерофосфолипиды (фосфоглицеридов) — это производные фосфатидной кислоты, состоящий из глицерина, в котором первые две гидроксильные группы эстерифицированные жирными кислотами (R 1 и R 2), а третья — фосфатной кислотой. К фосфатной группы в третьем положении присоединяется радикал (Х), обычно азотсодержащий. В природных фосфоглицеридов, в первом положении чаще всего расположен остаток насыщенной жирной кислоты, а во втором — ненасыщенной.

Остатки жирных кислот неполярные, поэтому они образуют гидрофобную часть молекулы глицерофосфолипидов, так называемые гидрофобные хвостики. Фосфатная группа в нейтральной среде несет отрицательный заряд, в то время, как азотсодержащие соединения — положительный (некоторые фосфоглицеридов могут содержать также и отрицательно заряженный или нейтральный радикал), так эта часть молекулы полярная, она образует гидрофильную голову. В водном растворе фосфоглицеридов образуют мицеллы, в которых головы повернуты наружу (водной фазы), а гирофобни хвостики — внутрь.

Наиболее распространенными фосфоглицеридов, входящих в состав мембран животных и высших растений, является фосфатидилхолин (лецитин), в которых радикал Х — это остаток холина, и фосфатидилэтаноламин, содержащих остаток этаноламина. Реже встречаются фосфатидилсерин, в которых к фосфатной группы присоединена аминокислота серин.

Существуют также безазотистые глицерофосфолипиды: например фосфатидидинозитолы (радикал Х — циклический шестиатомный спирт инозитол), участвующих в клеточном сигналюванни, и кардиолипиновые — двойные фосфоглицеридов (две молекулы фосфатидной кислоты соединены фосфатом), найденные во внутренней мембране митохондрий.

К глицерофосфолипидов относятся также плазмалогены, характерным признаком строения этих веществ является то, что в них ацильный остаток у первого атома углерода присоединен НЕ Эстерн, а эфирного связью. У позвоночных животных плазмалогенамы, которые еще называют эфирного липидами, обогащенная ткань сердечной мышцы. Также к этому классу соединений принадлежит биологически активное вещество фактор активации тромбоцитов.

Сфингофосфолипиды

Сфингофосфолипиды (сфингомиелины) состоят из церамида, содержащий один остаток длинноцепочечных аминоспирта сфингозина и один остаток жирной кислоты, и гирофильного радикала, присоединенного к сфингозина фосфодиестерним связью. В качестве гирофильного радикала чаще всего выступает холин или этаноламин. Сфингомиелины встречаются в мембранах различных клеток, но богатый на них нервная ткань, особенно высокое содержание этих веществ в миелиновой оболочке аксонов, откуда и происходит их название.

Гликолипиды

Гликолипиды — это класс липидов, содержащих остатки моно- или олигосахаридов. Они могут быть как производными глицерина, так и сфингозина.

Глицерогликолипиды

Глицерогликолипиды (гликозилглицеролы) — это производные диацилглицеролив, в которых, к третьему атома углерода глицерина присоединен гликозильним связью моно- или олигосахарид. Наиболее распространенными из этого класса соединений является галактолипидов, содержащих один или два остатка галактозы. Они составляют от 70% до 80% всех липидов мембран тилакоидов, из-за чего наиболее распространенными мембранными липидами биосферы. Предполагается, что растения «заменили» фосфолипиды гликолипидами за того, что содержание фосфатов в почве часто является лимитирующим фактором, а такая замена позволяет сократить потребность в нем.

На ряду с галактолипидов в растительных мембранах встречаются также сульфолипиды, содержащих остаток сульфатированных глюкозы.

Сфингогликолипиды

Сфингогликолипиды — содержат церамид, а также один или несколько остатков сахаров. Этот класс соединений разделяют на несколько подклассов в зависимости от строения углеводного радикала:

  • Цереброзиды — это сфингогликолипиды, гидрофильная часть которых представлена ​​остатком моносахарида, обычно глюкозы или галактозы. Галактоцереброзиды распространены в мембранах нейронов.
  • Глобозиды — олигосахаридных производные церамидов. Вместе с цереброзидов их называют нейтральными гликолипидами, поскольку при pH 7 они незаряженные.
  • Ганглиозиды — сложные с гликолипидов, их гидрофильная часть представлена ​​олигосахариды, на конце которого всегда находится один или несколько остатков N-ацетилнейраминовой (сиаловой) кислоты, поэтому они имеют кислотные свойства. Ганглиозиды наиболее распространенные в мембранах ганглионарной нейронов.

Основные функции

Подавляющее большинство липидов в живых организмах принадлежат к одной из двух групп: запасные, выполняющих функцию запасания энергии (преимущественно триацилглицеролов), и структурные, которые участвуют в построении клеточных мембран (преимущественно фосфолипиды и гилколипиды, а также холестерол). Однако функции липидов не ограничиваются только этими двумя, они также могут быть гормонами или другими сигнальными молекулами, пигментами, эмульгаторами, водоотталкивающими веществами покровов, обеспечивать термоизоляцию, изменение плавучести и тому подобное.

Запасные липиды

Почти все живые организмы запасают энергию в форме жиров. Существуют две главные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же, как в углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более вдвое больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры гидрофобные соединения, поэтому организм, запасает энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г приходится 2 г воды. Однако триглицериды это «медленнее» источник энергии чем углеводы.

Жиры запасаются в форме капель в цитоплазме клетки. У позвоночных имеющиеся специализированные клетки — адипоциты, почти целиком заполнены большим каплей жира. Также богатым ТГ являются семена многих растений. Мобилизация жиров в адипоцитах и ​​клетках семян, прорастает, происходит благодаря ферментам липазы, которые розщепелюють их к глицерина и жирных кислот.

У людей наибольшее количество жировой ткани расположена под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желез. Лицу с легким ожирением (15-20 кг триглицеридов) таких запасов может хватить для обеспечения энергией в течение месяца, в то время как всего запасного гликогена хватит менее чем на сутки.

Жировая ткань, на ряду с энергетическим обеспечением, выполняет также и другие функции: защита внутренних органов от механических повреждений; термоизоляция, особенно важна для теплокровных животных, живущих в очень холодных условиях, таких как тюлени, пингвины, моржи; жиры также могут быть источником метаболической воды, именно с такой целью используют свои запасы триглицеридов жители пустынь: верблюды, кенгуру крысы (Dipodomys).

Структурные липиды

Все живые клетки окружены плазматическими мембранами, основным структурным элементом которых является двойной слой липидов (липидный бислой). В 1 мкм 2 биологической мембраны содержится около миллиона молекул липидов. Все липиды, входящие в состав мембран, имеют амфифильные свойства: они составляют с гирофильнои и гирофобнои частей. В водной среде такие молекулы спонтанно образуют мицеллы и бислои результате гидрофобных взаимодействий, в таких структурах полярные головы молекул возвращены наружу водной фазы, а неполярные хвосты — внутрь, такое же размещение липидов характерно для природных мембран. Наличие гидрофобного слоя очень важна для выполнения мембранами их функций, поскольку он непроницаем для ионов и полярных соединений.

Липидный бислой биологических мембран — это двумерная жидкость, то есть отдельные молекулы могут свободно передвигаться относительно друг друга. Текучесть мембран зависит от их химического состава: например, с увеличением содержания липидов, в состав которых входят полиненасыщенные жирные кислоты она увеличивается.

Основными структурными липидами, входящих в состав мембран животных клеток, является глицерофосфолипиды, в основном фосфатидилхолин и фосфатидилэтаноламин, а также холестерол, что увеличивает их непроницаемость. Отдельные ткани могут быть выборочно обогащенные другими классами мембранных липидов, например нервная ткань содержит большое количество сфингофосфолипидив, в частности сфингомиелину, а также сфингогликолипидив. В мембранах растительных клеток холестерол отсутствует, однако встречается другой стероид — эргостерол. Мембраны тилакоидов содержат большое количество галактолипидов, а также сульфолипиды.

Уникальным липидным составом характеризуются мембраны архей: они состоят из так называемых глицерин диалкил гилцерол тетраетерив (ГДГТ). Эти соединения построены из двух длинных (около 32 атомов углерода) разветвленных углеводородов, присоединенных на обоих концах к остаткам глицерина эфирного связью. Использование эфирного связи вместо Эстерн, характерного для фосфо- и гликолипидов, объясняется тем, что он более устойчив к гидролизу в условиях низких значений pH и высокой температуры, что характерно для среды, в которой обычно проживают археи. На каждом из концов ГДГТ до глицерина присоединен по одной гидрофильной группе. ГДГТ в среднем вдвое длиннее мембранные липиды бактерий и эукариот и могут пронизывать мембрану насквозь.

Регуляторные липиды

Некоторые из липидов играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, в липидов относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.

Среди липидов также и вторичные посредники — вещества, которые принимают участие в передаче сигнала от гормонов или других биологически активных веществ внутри клетки. В частности фосфатидилинозитол-4,5 бифосфат (ФИ (4,5) Ф2) задействован в сигналюванни с участием G-белков, фосфатидилинозитол-3,4,5-трифосфат инициирует образование супрамолекулярных комплексов сигнальных белков в ответ на действие определенных внеклеточных факторов, сфинголипиды, такие как сфингомиелин и цермаид, могут регулировать активность протеинкиназы.

Производные арахидоновой кислоты — эйкозаноиды — является примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины, тромбоксаны и лейкотриены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимые для работы половой системы, для индукции и прохождения воспалительного процесса (в том числе обеспечение таких его аспектов как боль и повышенная температура), для свертывания крови, регуляции кровяного давления, также они могут быть задействованы в аллергических реакциях.

Другие функции

Часть витаминов, то есть веществ, необходимых для жизнедеятельности организма в небольших количествах, относятся к липидов. Их объединяют под названием жирорастворимые витамины и разделяют на четыре группы: витамин A, D, E и K. По химической природе все эти вещества являются изопреноидов. К изопреноидов также относятся и переносчики электронов убихинон и пластохинона, что является частью электронтранспортных цепей митохондрий и пластид соответственно.

Большинство изопреноидов содержащих конъюгированные двойные связи, из-за чего в их молекулах возможна делокализация электронов. Такие соединения легко возбуждаются светом, в результате чего они имеют цвет видимый человеческому глазу. Многие организмы используют изопреноиды как пигменты для поглощения света (например каротиноиды входящих в светособирающих комплексов хлоропластов), а также и для общения с особями своего или других видов (наприкалд изопреноидов зеаксантин предоставляет перьям некоторых птиц желтого цвета).

Липиды в диете человека

Среди липидов в диете человека преобладают триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимые для всасывания жирорастворимых витаминов. Насыщенными жирными кислотами богата пища животного происхождения: мясо, молочные продукты, а также некоторые тропические растения, такие как кокосы. Ненасыщенные жирные кислоты попадают в организм человека вследствие употребления орехов, семечек, оливкового и других растительных масел. Основными источниками холестерина в рационе является мясо и органы животных, яичные желтки, молочные продукты и рыба. Однако около 85% процентов холестерина в крови синтезируется печенью.

Организация American Heart Association рекомендует употреблять липиды в количестве не более 30% от общего рациона, сократить содержание насыщенных жирных кислот в диете до 10% от всех жиров и не употреблять более 300 мг (количество, содержащееся в одном желтке) холестерола в сутки. Целью этих рекомендаций является ограничение уровня холестерина и триглицеридов в крови до 20 мг / л.

Жиры занимают высокую энергетическую ценность и играют важную роль в биосинтезе липидных структур, прежде всего мембран клеток. Жиры пищевых продуктов представлены триглицеридами и липоидного веществами. Жиры животного происхождения состоят из насыщенных жирных кислот с высокой температурой плавления. Растительные жиры содержат значительное количество полиненасыщенных жирных кислот (ПНЖК).

Животные жиры содержат свиное сало (90-92% жира), сливочное масло (72-82%), свинина (до 49%), колбасы (20-40% для разных сортов), сметана (20-30%), сыры (15-30%). Источниками растительных жиров является масла (99,9% жира), орехи (53-65%), овсяная крупа (6,1%), гречневая крупа (3,3%).

Незаменимые жирные кислоты

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3 (линоленовая) и ω-6 (линолевая) полиненасични жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3 кислот: ейозапентаеноевои (EPA) и докозагексаеноевои (DHA). Эти вещества необходимы для работы головного мозга, и положительно влияют на конгитивни и поведенческие функции.

Важно также соотношение ω-6 ω-3 жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1: 1 до 4: 1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3. Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата линоленовой и другие ω-из кислоты, источником которых являются зеленые растения (напирклад листья салата) рыба, чеснок, цели злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую ω-с жирные кислоты рекомендуется употреблять рыбий жир.

Транс -ненасичени жирные кислоты

Большинство природных жиров содержат ненасыщенные жирные кислоты с двойными связями в цис -конфигурации. Если пища, богатая такие жиры, долгое время находится в контакте с воздухом, она горчит. Этот процесс связан с окислительным расщеплением двойных связей, в результате которого образуются альдегиды и карбоновые кислоты с меньшей молекулярной массой, часть из которых является летучими веществами.

Для того чтобы увеличить срок хранения и устойчивость к высоким температурам триглицеридов с ненасыщенными жирными кислотами применяют процедуру частичной гидрогенизации. Следствием этого процесса является превращение двойных связей в одинарные, однако побочным эффектом также может быть переход двойных связей с цис — в транс -конфигурации. Употребление так называемых «транс жиров» влечет повышение содержания липопротеинов низкой плотности («плохой» холестерол) и снижение содержания липопротеинов высокой плотности («хороший» холестерин) в крови, что приводит к увеличению риска возникновения сердечно-сосудистых заболеваний, в частности коронарной недостаточности. Более того «транс жиры» способствуют воспалительным процессам.

Негативный эффект «транс жиров» проявляется при употреблении 2-7 г в сутки, такое их количество может миситись в одной порции картофеля фри жареной на частично гидрогенизированные масла. Некоторыми законодательствами запрещено использование такого масла, например в Дании, штате Филадельфия и Нью-Йорк.