Открытый огонь, раскаленные продукты горения и нагретые ими поверхности. Искровой разряд Температура электрической искры


4.9. На основании собранных данных вычисляют коэффициент безопасности K s в следующей последовательности.
4.9.1. Вычисляют среднее время существования пожаровзрывоопасного события (t0) (среднее время нахождения в отказе) по формуле
(68)
где tj - время существования i -го пожаровзрывоопасного события, мин;
m - общее количество событий (изделий);
j - порядковый номер события (изделия).
4.9.2. Точечную оценку дисперсии (D 0) среднего времени существования пожаровзрывоопасного события вычисляют по формуле
(69)
4.9.3. Среднее квадратическое отклонение () точечной оценки среднего времени существования события - t0 вычисляют по формуле
(70)
4.9.4. Из табл. 5 выбирают значение коэффициента t b в зависимости от числа степеней свободы (m -1) при доверительной вероятности b=0,95.
Таблица 5

m -1
1
2
От 3 до 5
От 6 до 10
От 11 до 20
20
t b
12,71
4,30
3,18
2,45
2,20
2,09

4.9.5. Коэффициент безопасности (K б) (коэффициент, учитывающий отклонение значения параметра t0, вычисленного по формуле (68), от его истинного значения) вычисляют из формулы
(71)
4.9.6. При реализации в течение года только одного события коэффициент безопасности принимают равным единице.
5. Определение пожароопасных параметров тепловых источников интенсивности отказов элементов
5.1. Пожароопасные параметры тепловых источников
5.1.1. Разряд атмосферного электричества
5.l.l.l. Прямой удар молнии
Опасность прямого удара молнии заключается в контакте горючей среды с каналом молнии, температура в котором достигает 30000°С при силе тока 200000 А и времени действия около 100 мкс. От прямого удара молнии воспламеняются все горючие среды.
5.1.1.2. Вторичное воздействие молнии
Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ с минимальной энергией зажигания до 0,25 Дж.
5.1.1.3. Занос высокого потенциала
Занос высокого потенциала в здание происходит по металлическим коммуникациям не только при их прямом поражении молнией, но и при расположении коммуникаций в непосредственной близости от молниеотвода. При соблюдении безопасных расстояний между молниеотводами и коммуникациями энергия возможных искровых разрядов достигает значений 100 Дж и более, то есть достаточна для воспламенения всех горючих веществ.
5.1.2. Электрическая искра (дуга)
5.1.2.1. Термическое действие токов короткого замыкания
Температуру проводника (t пр), °С, нагреваемого током короткого замыкания, вычисляют по формуле
(72)
где t н - начальная температура проводника, °С;
I к.з - ток короткого замыкания, А;
R - сопротивление проводника, Oм;
tк.з - время короткого замыкания, с;
С пр - теплоемкость проводника, Дж×кг-1×К-1;
m пр - масса проводника, кг.
Воспламеняемость кабеля и проводника с изоляцией зависит от значения кратности тока короткого замыкания I к.з, т. е. от значения отношения I к.з к длительно допустимому току кабеля или провода. Если эта кратность больше 2,5, но меньше 18 для кабеля и 21 для провода, то происходит воспламенение поливинилхлоридной изоляции.
5.1.2.2. Электрические искры (капли металла)
Электрические искры (капли металла) образуются при коротком замыкании электропроводки, электросварке и при плавлении электродов электрических ламп накаливания общего назначения. Размер капель металла при этом достигает 3 мм (при потолочной сварке - 4 мм). При коротком замыкании и электросварке частицы вылетают во всех направлениях, и их скорость не превышает 10 и 4 м×с-1 соответственно. Температура капель зависит от вида металла и равна температуре плавления. Температура капель алюминия при коротком замыкании достигает 2500 °С, температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100 °C. Размер капель при резке металла достигает 15-26 мм, скорость - 1 м×с-1 температура 1500 °C. Температура дуги при сварке и резке достигает 4000 °С, поэтому дуга является источником зажигания всех горючих веществ.
Зона разлета частиц при коротком замыкании зависит от высоты расположения провода, начальной скорости полета частиц, угла вылета и носит вероятностный характер. При высоте расположения провода 10 м вероятность попадания частиц на расстояние 9 м составляет 0,06; 7м-0,45 и 5 м-0,92; при высоте расположения 3 м вероятность попадания частиц на расстояние 8 м составляет 0,01, 6 м - 0,29 и 4 м- 0,96, а при высоте 1 м вероятность разлета частиц на 6 м- 0,06, 5 м - 0,24, 4 м - 0,66 и 3 м - 0,99.
Количество теплоты, которое капля металла способна отдать горючей среде при остывании до температуры ее самовоспламенения, рассчитывают следующим способом.
Среднюю скорость полета капли металла при свободном падении (wк), м×с-1, вычисляют по формуле
(73)
где g =9,8l м×с-1 - ускорение свободного падения;
Н - высота падения, м.
Объем капли металла (V к), м3, вычисляют по формуле
(74)
где d k - диаметр капли, м.
Массу капли (m k), кг, вычисляют по формуле
(75)
где r - плотность металла, кг×м-3.
В зависимости от продолжительности полета капли возможны три ее состояния: жидкое, кристаллизации, твердое.
Время полета капли в расплавленном (жидком) состоянии (tp), с, рассчитывают по формуле
(76)
где C p - удельная теплоемкость расплава металла, Дж×к-1К-1;
m k - масса капли, кг;
S k=0,785 - площадь поверхности капли, м2;
Т н, Т пл - температура капли в начале полета и температура плавления металла соответственно, К;
Т 0 - температура окружающей среды (воздуха), К;
a - коэффициент теплоотдачи, Вт, м-2 К-1.
Коэффициент теплоотдачи определяют в следующей последовательности:
а) вычисляют число Рейнольдса по формуле
(77)
где d k - диаметр капли м;
v = 15,1×10-6 - коэффициент кинематической вязкости воздуха при температуре 20°С, м-2×с-1.
б) вычисляют критерий Нуссельта по формуле
(78)
в) вычисляют коэффициент теплоотдачи по формуле
, (79)
где lВ=22×10-3 - коэффициент теплопроводности воздуха, Вт×м-1× -К-1.
Если t£tр, то конечную температуру капли определяют по формуле
(80)
Время полета капли, в течение которого происходит ее кристаллизация, определяют по формуле
(81)
где С кр - удельная теплота кристаллизации металла, Дж×кг-1.
Если tр (82)
Если t>(tр+tкр), то конечную температуру капли в твердом состоянии определяют по формуле
(83)
где С к - удельная теплоемкость металла, Дж кг -1×K-1.
Количество тепла (W ), Дж, отдаваемое каплей металла твердому или жидкому горючему материалу, на который она попала, вычисляют по формуле
(84)
где Т св - температура самовоспламенения горючего материала, К;
К - коэффициент, равный отношению тепла, отданного горючему веществу, к энергии, запасенной в капле.
Если отсутствует возможность определения коэффициента К , то принимают К =1.
Более строгое определение конечной температуры капли может быть проведено при учете зависимости коэффициента теплоотдачи от температуры.
5.1.2.3. Электрические лампы накаливания общего назначения
Пожарная опасность светильников обусловлена возможностью контакта горючей среды с колбой электрической лампы накаливания, нагретой выше температуры самовоспламенения горючей среды. Температура нагрева колбы электрической лампочки зависит от мощности лампы, ее размеров и расположения в пространстве. Зависимость максимальной температуры на колбе горизонтально расположенной лампы от ее мощности и времени приведена на черт. 3.


Черт. 3

5.1.2.4. Искры статического электричества
Энергию искры (W и), Дж, способной возникнуть под действием напряжения между пластиной и каким-либо заземленным предметом, вычисляют по запасенной конденсатором энергии из формулы
(85)
где С - емкость конденсатора, Ф;
U - напряжение, В.
Разность потенциалов между заряженным телом и землей измеряют электрометрами в реальных условиях производства.

Если W и³0,4 W м.э.з (W м.э.з ¾ минимальная энергия зажигания среды), то искру статического электричества рассматривают как источник зажигания.
Реальную опасность представляет “контактная” электризация людей, работающих с движущимися диэлектрическими материалами. При соприкосновении человека с заземленным предметом возникают искры с энергией от 2,5 до 7,5 мДж. Зависимость энергии электрического разряда с тела человека и от потенциала зарядов статического электричества показана на черт. 4.
5.1.3. Механические (фрикционные) искры (искры от удара и трения)
Размеры искр удара и трения, которые представляют собой раскаленную до свечения частичку металла или камня, обычно не превышают 0,5 мм, а их температура находится в пределах температуры плавления металла. Температура искр, образующихся при соударении металлов, способных вступать в химическое взаимодействие друг с другом с выделением значительного количества тепла, может превышать температуру плавления и поэтому ее определяют экспериментально или расчетом.
Количество теплоты, отдаваемое искрой при охлаждении от начальной температуры t н до температуры самовоспламенения горючей среды t св вычисляют но формуле (84), а время остывания t - следующим образом.
Отношение температур (Qп) вычисляют по формуле
(86)
где t в - температура воздуха, °С.
Коэффициент теплоотдачи (a ), Вт×м-2×К-1, вычисляют по формуле
(87)
где w и - скорость полета искры, м×с-1.
Скорость искры (w и), образующейся при ударе свободно падающего тела, вычисляют по формуле
(88)
а при ударе о вращающееся тело по формуле
(89)
где n - частота вращения, с-1;
R - радиус вращающегося тела, м.
Скорость полета искр, образующихся при работе с ударным инструментом, принимают равной 16 м×с-1, а с высекаемых при ходьбе в обуви, подбитой металлическими набойками или гвоздями, 12 м×с-1.
Критерий Био вычисляют по формуле
(90)
где d и - диаметр искры, м;
lи - коэффициент теплопроводности металла искры при температуре самовоспламенения горючего вещества (t св), Вт м -1×K-1.
По значениям относительной избыточной температуры qп и критерия В i определяют по графику (черт. 5) критерий Фурье.

Черт. 5

Длительность остывания частицы металла (t), с, вычисляют по формуле
(91)
где F 0 - критерий Фурье;
С и - теплоемкость металла искры при температуре самовоспламенения горючего вещества, Дж×кг-1×К-1;
rи - плотность металла искры при температуре самовоспламенения горючего вещества, кг×м-3.
При наличии экспериментальных данных о поджигающей способности фрикционных искр вывод об их опасности для анализируемой горючей среды допускается делать без проведения расчетов.
5.1.4. Открытое пламя и искры двигателей (печей)
Пожарная опасность пламени обусловлена интенсивностью теплового воздействия (плотностью теплового потока), площадью воздействия, ориентацией (взаимным расположением), периодичностью и временем его воздействия на горючие вещества. Плотность теплового потока диффузионных пламен (спички, свечи, газовой горелки) составляет 18-40 кВт×м-2, а предварительно перемешанных (паяльные лампы, газовые горелки) 60-140 кВт×м-2 В табл. 6 приведены температурные и временные характеристики некоторых пламен и малокалорийных источников тепла.
Таблица 6

Наименование горящего вещества (изделия) или пожароопасной операции
Температура пламени (тления или нагрева), оС
Время горения (тления), мин
Легковоспламеняющиеся и горючие жидкости
880
¾
Древесина и лесопиломатериалы
1000
-
Природные и сжиженные газы
1200
-
Газовая сварка металла
3150
-
Газовая резка металла
1350
-
Тлеющая папироса
320-410
2-2,5
Тлеющая сигарета
420¾460
26-30
Горящая спичка
600¾640
0,33

Открытое пламя опасно не только при непосредственном контакте с горючей средой, но и при ее облучении. Интенсивность облучения (g р), Вт×м-2, вычисляют по формуле
(92)
где 5,7 - коэффициент излучения абсолютно черного тела, Вт×м-2×К-4;
eпр - приведенная степень черноты системы
(93)
eф - степень черноты факела (при горении дерева равна 0,7, нефтепродуктов 0,85);
eв - степень черноты облучаемого вещества принимают по справочной литературе;
Т ф - температура факела пламени, К,
Т св - температура горючего вещества, К;
j1ф- коэффициент облученности между излучающей и облучаемой поверхностями.
Критические значения интенсивности облучения в зависимости от времени облучения для некоторых веществ приведены в табл. 7.
Пожарная опасность искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров, в значительной степени определяется их размером и температурой. Установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм-800 °С, диаметром 5 мм-600 °С.
Теплосодержание и время остывания искры до безопасности температуры вычисляют по формулам (76 и 91). При этом диаметр искры принимают 3 мм, а скорость полета искры (wи), м×с-1, вычисляют по формуле
(94)
где wв - скорость ветра, м×с-1;
H - высота трубы, м.
Таблица 7
Материал
Минимальная интенсивность облучения, Вт×м-2, при продолжительности облучения, мин

3
5
15
Древесина (сосна влажностью 12%)
18800
16900
13900
Древесно-стружечная плита плотностью 417 кг×м-3
13900
11900
8300
Торф брикетный
31500
24400
13200
Торф кусковой
16600
14350
9800
Хлопок-волокно
11000
9700
7500
Слоистый пластик
21600
19100
15400
Стеклопластик
19400
18600
17400
Пергамин
22000
19750
17400
Резина
22600
19200
14800
Уголь
¾
35000
35000
Вопрос 1: Классификация источников зажигания;

ИСТОЧНИК ЗАЖИГАНИЯ - источник энергии, инициирующий загорание. Должен обладать достаточной энергией, температурой и длительностью воздействия.

Как уже было раньше отмечено, горение может возникнуть при влиянии на ГС разнообразных источников зажигания. По природе происхождения источники зажигания можно классифицировать:

Открытый огонь, раскаленные продукты горения и нагретые ими поверхности

Для производственных целей широко используют огонь, огневые печи, реакторы, факелы для сжигания паров и газов. При проведении ремонтных работ часто используют пламя горелок и паяльных ламп, применяют факелы для отогревания замерзших труб, костры для прогрева грунта при сжигании отходов. Температура пламени, а также количество тепла, которое при этом выделяется, достаточны для зажигания почти всех горючих веществ.

Открытое пламя. Пожарная опасность пламени обусловленна температурой факела и временем его влияния на горючие вещества. Например, воспламенение возможно от таких “малокалорийных” ИЗ, как тлеющий окурок сигареты или папиросы, зажженной спички (табл 1).

Источники открытого огня - факелы - нередко используют для разогрева застывшего продукта, для освещения при осмотре аппаратов в темноте, например, при измерении уровня жидкостей, при разведении костра на территории объектов с наличием ЛВЖ и ГЖ.

Высоконагретые продукты горения - газообразные продукты горения, которые получаются при горении твердых, жидких и газообразных веществ и могут достигать температур 800-1200оС. Пожарную опасность представляет выход высоконагретых продуктов через неплотности в кладке топок, дымовых каналов.

Производственными источниками зажигания также являются искры, которые возникают при работе топок и двигателей. Они представляют собой твердые раскаленные частицы топлива или окалины в газовом потоке, которые получаются в результате неполного сгорания или механического выноса горючих веществ и продуктов коррозии. Температура такой твердой частицы достаточно высокая, но запас тепловой энергии (W) небольшой из-за маленькой массы искры. Искра способна зажечь только вещества, достаточно подготовленные к горению (газо-паровоздушные смеси, осевшая пыль, волокнистые материалы).

Топки “искрят” из-за конструктивных недостатков; из-за использования сорта топлива, на который топка не расcчитана; из-за усиленного дутья; из-за неполного сгорания топлива; из-за недостаточного распыления жидкого топлива, а также из-за не соблюдения сроков чистки печей.

Искры и нагар при работе ДВС образуются при неправильном регулировании системы подачи топлива, электрозажигания; при загрязнении топлива смазочными маслами и минеральными примесями; при продолжительной работе двигателя с перегрузками; при нарушении сроков очистки выхлопной системы от нагара.

Пожарная опасность искр котельных, труб паровозов и тепловозов, а также других машин, костра в значительной степени определяются их размером и температурой. Установлено, что искра d = 2 мм пожароопасна, если имеет t » 1000°С; d=3 мм - 800°С; d = 5 мм - 600°С.

Опасные тепловые проявления механической энергии

В производственных условиях пожароопасное повышение температуры тел в результате преобразования механической энергии в тепловую наблюдается:


  • при ударах твердых тел (с образованием или без образования искр);

  • при поверхностном трении тел во время их взаимного перемещения;

  • при механической обработке твердых материалов режущим инструментом;

  • при сжатии газов и прессовании пластмасс.

Степень разогрева тел и возможность появления при этом источника зажигания зависит от условий перехода механической энергии в тепловую.

Искры, которые получаются при ударах твердых тел.

Размеры искр удара и трения, которые представляют собой раскаленную до свечения частичку металла или камня, обычно не превышают 0,5 мм. Температура искр нелегированных малоугольных сталей может достигать температуры плавления металла (около 1550оС).

В производственных условиях от удара искр воспламеняются ацетилен, этилен, водород, оксид углерода, сероуглерод, метано-воздушная смесь и другие вещества.

Чем больше в смеси кислорода, тем интенсивнее горит искра, тем выше горючесть смеси. Искра, которая летит, непосредственно не воспламеняет пылевоздушной смеси, но, попав на осевшую пыль или на волокнистые материалы, вызовет появление очагов тления. Так на мукомольных, ткацких и хлопкопрядильных предприятиях около 50% всех пожаров возникает от искр, которые высекаются при ударах твердых тел.

Искры, которые получаются при ударах алюминиевых тел о стальную окисленную поверхность, приводят к химическому воздействию с выделением значительного количества тепла.

Искры, образующиеся при попадании в машины металла или камней.

В аппаратах с мешалками, дробилках, аппаратах-смесителях и других, в том случае, если вместе с обрабатываемыми продуктами попадают куски металла или камни, могут образовываются искры. Искры образуются также при ударах подвижных механизмов машин об их неподвижные части. В практике нередко бывает так, что ротор центробежного вентилятора сталкивается со стенками кожуха или игольчатыми и ножевыми барабанами волокноотделительных и трепальных машин, которые быстро вращаются, ударяются о неподвижные стальные решетки. В таких случаях наблюдается искрообразование. Оно возможно и при неправильном регулировании зазоров, при деформации и вибрации валов, изнашивании подшипников, перекосах, недостаточном креплении на валах режущего инструмента. В таких случаях возможно не только искрообразование, но и поломка отдельных частей машин. Поломка узла машины, в свою очередь, может быть причиной образования искр, так как частицы металла попадают при этом в продукт.

Зажигание горючей среды от перегрева при трении.

Всякое перемещение соприкасающихся друг с другом тел требует затраты энергии на преодоление работы сил трения. Эта энергия в основном превращается в теплоту. При нормальном состоянии и правильной эксплуатации частей, которые трутся, тепло, которое выделяется своевременно отводится специальной системой охлаждения, а также рассеивается в окружающая среде. Увеличение тепловыделения или уменьшение теплоотвода и теплопотерь, ведет к повышению температуры трущихся тел. По этой причине происходит воспламенение горючей среды или материалов от перегрева подшипников машин, сильно затянутых сальников, барабанов и транспортерных лент, шкивов и приводных ремней, волокнистых материалов при наматывании их на валы машин и апаратов, которые вращаются.

В этом отношении наиболее пожароопасными являются подшипники скольжения сильно нагруженных и высокооборотистых валов. Плохое качество смазки рабочих поверхностей, их загрязнение, перекос валов, перегрузка машин и черезмерное затягивание подшипников - все это может явиться причиной перегрузки. Очень часто корпус подшипников загрязняется отложениями горючей пыли. Это также создает условия для их перегрева.

На объектах, где применяются или обрабатываются волокнистые материалы происходит их загорание при наматывании на вращающиеся узлы (прядильные фабрики, льнозаводы, эксплуатация комбайнов). Волокнистые материалы и соломистые продукты наматываются на валы возле подшипников. Наматывания сопровождается постепенным уплотнением массы, а потом сильным нагреванием ее при трении, обугливанием и воспламенением.

Выделение тепла при сжатии газов.

Значительное количество тепла выделяется при сжатии газов в результате межмолекулярного движения. Неисправность или отсутствие системы охлаждения компрессоров может привести к их разрушению при взрыве.

Опасные тепловые проявления химических реакций

В условиях производства и хранения химических веществ встречается большое количество таких химических соединений, контакт которых с воздухом или водой, а также взаимный контакт друг с другом может быть причиной возникновения пожара.

1) Химические реакции, которые протекают с выделением значительного количества тепла, имеют потенциальную опасность возникновения пожара или взрыва, так как возможный неконтролируемый процес разогрева реагирующих, вновь образующихся или рядом находящихся горючих веществ.

2) Вещества, которые самовоспламеняются и самовозгораются при контакте с воздухом.

3) Нередко, по условиям технологического процеса, вещества, находящиеся в апаратах, могут быть нагретые до температуры, превышающей температуру их самовозгорания. Так, продукты пиролиза газа при получении этилена из нефтепродуктов имеют температуру самовоспламенения в границах 530 – 550оС, а выходят из печей пиролиза при температуре 850оС. Мазут с температурой самовоспламенения 380 – 420оС на установках термического крекинга нагревается до 500оС; бутан и бутилен, который имеют температуру самовоспламенения соответственно 420оС и 439оС, при получении бутадиена нагревается до 550 – 650оС и т. д. При выходе наружу этих веществ происходит их самовоспламенение.

4) Иногда вещества в технологических процесах имеют очень низкую температуру самовоспламенения:

Триэтилалюминий - Al (C2H5)3 (-68°С);

Диэтилалюминийхлорид - Al (C2H5)2Сl (-60°С);

Триизобутилалюминий (-40°С);

Фтористый водород, жидкий и белый фосфор - ниже комнатной.

5) Многие вещества при контакте с воздухом способны к самовозгоранию. Самовозгорание начинается при температуре окружающей среды или после некоторого преварительного их подогрева. К таким веществам следует отнести растительные масла и жиры, сернистые соединения железа, некоторые сорта сажи, порошковидные вещества (алюминий, цинк, титан, магний и т.п.), сено, зерно в силосах и т.п.

Контакт самовоспламеняющихся химических веществ с воздухом происходит обычно при повреждении тары, разливе жидкости, расфасовке веществ, при сушении, открытом хранении твердых измельченных, а также волокнистых материалов, при откачке жидкостей из резервуаров, когда внутри резервуаров есть самовоспламеняющиеся отложения.

Вещества, которые воспламеняются при взаимодействии с водой.

На промышленных объектах имеется значительное количество веществ, воспламеняющихся при взаимодействии с водой. Выделяющееся при этом тепло может вызвать воспламенение образующихся или примыкающих к зоне реакции горючих веществ. К веществам, воспламеняющимся или вызывающим горение при соприкосновении с водой, следует отнести щелочные металлы, карбид кальция, карбиды щелочных металлов, сернистый натрий и др. Многие из этих веществ при взаимодействии с водой образуют горючие газы, воспламеняющиеся от теплоты реакции:

2К +2Н2О=КОН+Н2+Q.

При взаимодействии небольшого количества (3...5 г) калия и натрия с водой температура поднимается выше 600...650оС. Если взаимодействуют в большом количестве, происходят взрывы с разбрызгиванием расплавленного металла. В дисперсном состоянии щелочные металлы загораются во влажном воздухе.

Некоторые вещества, например негашеная известь, являются негорючими, но теплота реакции их с водой может нагреть горючие материалы, которые находятся рядом, до температуры самовоспламенения. Так, при контакте воды с негашеной известью температура в зоне реакции может достичь 600оС:

Са + Н2О = Са(ВОН)2 + Q.

Известны случаи пожаров в птичниках, где в качестве подстилки применялось сено. Пожары возникали после обработки птицеводческих помещений негашеной известью.

Опасен контакт с водой алюминийорганических соединений, так как их взаимодействие с водой происходит со взрывом. Усиление пожара или взрыва, что начались, может произойти при попытках тушить подобные вещества водой или пеной.

Воспламенение химических веществ при взаимоконтакте происходят при действии окислителей на органические вещества. В качестве окислителей выступают хлор, бром, фтор, окислы азота, азотная кислота, кислород и много других веществ.

Окислители при взаимодействии с органическими веществами вызовут их загорание. Некоторые смеси окислителей и горючих веществ способны загоратся при действии на них серной или азотной кислотой или небольшим количеством влаги.

Реакции взаимодействия окислителя с горючим веществом содействует измельченность веществ, его повышенная начальная температура, а также наличие инициаторов химического процеса. В некоторых случаях реакции носят характер взрыва.

Вещества, которые воспламеняются или взрываются при нагревании или механическом воздействии.

Некоторые химические вещества нестойки по природе, способны разлагаться с течением времени под действием температуры, трения, удара и других факторов. Это, как правило, эндотермические соединения, и процесс их разложения связан с выделением большого или меньшего количества тепла. К ним относятся селитры, перекиси, гидроперекиси, карбиды некоторых металлов, ацетилениды, ацетилен и др.

Нарушения технологического регламента, использования или хранения таких веществ, влияние на них источника тепла может привести к взрывному их разложению.

Склонность к взрывному разложению под действием повышенной температуры и давления имеет ацетилен.

Тепловые проявления электрической энергии

При несоответствии электрооборудования характеру технологической среды, а также в случае несоблюдения правил эксплуатации этого электрооборудования может возникнуть пожаровзрывоопасная ситуация на производстве. Пожаровзрывоопасные ситуации возникают в технологических процесах производств при КЗ, при пробоях прослойки изоляции, при чрезмерном перегреве электродвигателей, при повреждениях отдельных участков электрических сетей, при искровых разрядах статического и атмосферного электричества и т.д.

К разрядам атмосферного электричества относятся:


  • Прямые удары молнии. Опасность прямого удара молнии состоит в контакте ГС с каналом молнии, температура в котором достигает 2000оС при времени действия около 100 мкс. От прямого удара молнии воспламеняются все горючие смеси.

  • Вторичные проявления молнии. Опасность вторичного проявления молнии состоит в искровых разрядах, которые возникают в результате индукционного и электромагнитного влияния атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ из Wmin = 0,25 Дж.

  • Занос высокого потенциала. Занос высокого потенциала в здание происходит по металлическим коммуникациям не только при их прямом поражении молнией, но и при расположении комуникаций в непосредственной близости от молниеотвода. При несоблюдении безопасных расстояний между молниеотводом и коммуникациями, энергия возможных искровых разрядов достигает значений 100 Дж и больше. То есть достаточна для загорания практически всех горючих веществ.
Электрические искры (дуги):

Термическое действие токов КЗ. В результате КЗ происходит термическое действие на проводник, который нагревается до высоких температур и может являться ИЗ горючей среды.

Электрические искры (капли металла). Электрические искры образуются при КЗ электропроводки, электросварке и при плавлении электродов электрических ламп накаливания общего назначения.

Размер капель металла при КЗ электропроводки и плавлении нити накаливания электроламп достигает 3 мм, а при электросварке 5 мм. Температура дуги при электросварке достигает 4000 оС, поэтому дуга будет источником зажигания для всех горючих веществ.

Электрические лампы накаливания. Пожарная опасность светильников обусловлена возможностью контакта ГС с колбой электрической лампы накаливания, нагретой выше температуры самовоспламенения ГС. Температура нагревания колбы электрической лампочки зависит от ее мощности, размеров и расположения в пространстве.

Искры статического электричества. Разряды статического электричества могут образоваться при транспортировании жидкостей, газов и пыли, при ударах, измельчении, распылении и подобных процессах механического влияния на материалы и вещества, являющиеся диэлектриками.

Вывод: Для обеспечения безопасности технологических процессов, в которых возможен контакт горючих веществ с источниками зажигания, необходимо точно знать их природу для исключения воздействия на среду.

Вопрос 2: Профилактические мероприятия исключающие воздействия источников зажигания на горючую среду.;

Противопожарные мероприятия, которые исключают контакт горючей среды (ГС) с открытым пламенем и раскаленными продуктами горения.

Для обеспечения пожаровзрывобезопасности технологических процессов, процессов переработки, хранения и транспортирования веществ и материалов необходимы разработка и внедрение инженерно-технических мероприятий, которые предотвращают образование или внесение в ГС источника зажигания.

Как было отмечено раньше, не каждое нагретое тело может быть источником зажигания, а только те нагретые тела, которые способны нагреть некоторый объем горючей смеси до определенной температуры, когда скорость тепловыделения равняется либо превышает скорость теплоотвода из зоны реакции. В этом случае мощность и продолжительность теплового влияния источника должны быть такие, чтобы на протяжении определенного времени поддерживались критические условия, необходимые для формирования фронта пламени. Поэтому, зная эти условия (условия формирования ИЗ), можно создать такие условия ведения технологических процессов, которые исключали бы возможность образования источников зажигания. В тех случаях, когда условия безопасности не выполняются, внедряют инженерно-технические решения, которые разрешают исключить контакт ГС с источниками зажигания.

Основным инженерно-техническим решением, которое исключает контакт горючей среды с открытым пламенем, раскаленными продуктами сгорания, а также высоконагретыми поверхностями является изоляция их от возможного соприкосновения как при нормальной работе оборудования, так и при авариях.

При проектировании технологических процессов с наличием аппаратов “огневого” действия (трубчатые печи, реакторы, факелы) необходимо предусматривать изоляцию этих установок от возможного столкновения с ними горючих паров и газов. Это достигается:


  • размещением установок в закрытых помещениях, обособленных от других аппаратов;

  • размещением на открытых площадках между “огневыми” аппаратами и пожароопасными установками защитных преград. Например, размещения закрытых сооружений, которые выполняют роль преграды.

  • соблюдением пожаробезопасных регламентированных разрывов между аппаратами;

  • применением паровых завес в тех случаях, когда невозможно обеспечить пожаробезопасное расстояние;

  • обеспечением безопасного конструктивного выполнения факельных горелок устройствами беспрерывного сжигания, схема которого приведена на рис. 1.

Рисунок 1 - Факел для сжигания газов: 1 - линия подачи водяного пара; 2 - линия поджигания очередной горелки; 3 - линия подачи газа к очередной горелке; 4 - горелка; 5 - ствол факела; 6 - огнепреградитель; 7 - сепаратор; 8 - линия, по которой подводят газ на сжигание.

Поджигание газовой смеси в очередной горелке осуществляют с помощью так называемого пламени, которое бежит, (предварительно подготовленная горючая смесь поджигается электрозапалом и пламя, перемещаясь вверх, производит поджиг газа горелки). Чтобы уменьшить образование дыма и искр, к факельной горелке подводят водяной пар.


  • исключением образования “малокалорийных” ИЗ (на объектах курение разрешается только в специально оборудованных местах).

  • использованием горячей воды или водяного пара для отогревания замерзших участков технологического оборудования вместо факелов (оборудование открытых стоянок автомобилей системами подачи горячего воздуха) или индукционных грелок.

  • очисткой трубопроводов и вентиляционных систем от горючих отложений пожаробезопасным средством (пропарка и механическая очистка). В исключительных случаях допускается выжигание отходов после демонтажа трубопроводов на специально отведенных участках и постоянных местах проведения огневых работ.

  • контролем за состоянием кладки дымовых каналов при эксплуатации топок и ДВС, не допускать неплотности и прогаров выхлопных труб.

  • защитой высоконагретых поверхностей технологического оборудования (камеры ретурбентов) теплоизоляцией с защитными кожухами. Предельно допустимая температура поверхности не должна превышать 80% температуры самовоспламенения горючих веществ, которые обращаются в производстве.

  • предупреждением опасного проявления искр топок и двигателей. На практике данное направление защиты достигается предупреждением образования искр и использованием специальных устройств для улавливания и их тушения. Для предупреждения образования искр предусматривают: автоматическое поддержание оптимальной температуры подаваемой на сжигание горючей смеси; автоматическое регулирование оптимального соотношения между топливом и воздухом в горючей смеси; предупреждение продолжительной работы топок и двигателей в форсированном режиме, с перегрузкой; использование тех видов топлива, на которые рассчитаны топка и двигатель; систематическая очистка внутренних поверхностей топок, дымовых каналов от сажи и выпускных коллекторов двигателей от нагаромаслянных отложений и т.п.

Для улавливания и тушения искр, которые образуются при работе топок и двигателей, применяют искроулавливатели и искрогасители, работа которых основана на использовании гравитационных (осадочных камер), инерционных (камер с перегородками, сетками, насадками), центробежных сил (циклонные и турбинно-вихревые камеры).

Наибольшее распространение на практике получили искроулавливатели гравитационного, инерционного и центробежного типа. Ими оборудуют, например, дымовые каналы дымогазовых сушилок, системы выпуска выхлопных газов автомобилей и тракторов.

Для обеспечения глубокой очистки топочных газов от искр на практике часто применяют не один, а несколько разнообразных типов искроулавливателей и искрогасителей, которые соединяют между собою последовательно. Многоступенчатое искроулавливание и тушение надежно себя зарекомендовало, например, в технологических процессах сушки измельченных горючих материалов, где в качестве теплоносителя используются дымовые топочные газы в смеси с воздухом.

Противопожарные мероприятия, которые исключают опасные тепловые проявления механической энергии

Предотвращение образования источников зажигания от опасных тепловых влияний механической энергии является актуальной задачей на взрывопожароопасных объектах, а также на объектах, где применяются или перерабатываются пыль и волокна.

Для предотвращения образования искр при ударах, а также выделении тепла при трении применяются такие организационные и технические решения:

Применение искробезопасного инструмента. В местах возможного образования взрывоопасных смесей паров или газов необходимо применять взрывобезопасный инструмент. Искробезопасными считают инструменты, выполненные из бронзы, фосфористой бронзы, латуни, берилия и др.

Пример: 1. Искробезопасные башмаки торможения ж.д. цистерн.2. Латунный инструмент для открывания барабанов с карбидом кальция на ацетиленовых станциях.

Применение магнитных, гравитационных или инерционных улавливателей. Так, для очистки хлопка-сырца от камней перед поступлением его в машины устанавливают гравитационные или инерционные камнеулавливатели. Металлические примеси в сыпучих и волокнистых материалах улавливают также магнитными сепараторами. Такие устройства широко применяются в мукомольном и крупяном производстве, а также на комбикормовых заводах.

Если есть опасность попадания в машину твердых немагнитных примесей, осуществляют, во-первых, тщательную сортировку сырья, во-вторых, внутреннюю поверхность машин, об которую эти примеси могут удариться, футеруют мягким металлом, резиной или пластмассой.

Предотвращение возникновения ударов подвижных механизмов машин об их неподвижные части. Основные пожарно-профилактические мероприятия, направленные на предотвращение образования искр удара и трения, сводятся к тщательному регулированию и балансированию валов, правильному отбору подшипников, проверке величины зазоров между подвижными и неподвижными частями машин, их надежному креплению, которое исключает возможность продольных перемещений; предотвращению перегрузки машин.

Выполнение во взрывопожароопасных помещениях полов, которые не искрят. Повышенные требования по искробезопасности выдвигаются к производственным помещениям с наличием ацетилена, этилена, окиси углерода, сероуглерода и др., полы и площадки которых выполняют из материала, который не образует искр, или выстилают резиновыми ковриками, дорожками и т.п.

Предотвращение загорания веществ в местах интенсивного тепловыделения при трении. С этой целью для предупреждения перегрева подшипников осуществляют замену подшипников скольжения на подшипники качения (там, где существует такая возможность). В других случаях осуществляется автоматический контроль температуры их нагревания. Визуальный контроль температуры осуществляется нанесением термовосприимчивых красок, которые изменяют свой цвет при нагревании корпуса подшипника.

Предупреждение перегрева подшипников также достигается: оборудованием автоматических систем охлаждения с применением в качестве хладоагента масел или воды; своевременным и качественным техническим обслуживанием (систематическая смазка, предупреждение чрезмерного затягивания, ликвидация перекосов, очищение поверхности от загрязнений).

Во избежание перегревов и загораний транспортерных лент и приводных ремней нельзя допускать работу с перегрузкой; следует контролировать степень натяжения ленты, ремня, их состояние. Нельзя допускать завалов башмаков элеваторов продукцией, перекосов лент и трение их об кожухи. При использовании мощных высокопроизводительных транспортеров и элеваторов могут применяться устройства и приспособления, которые автоматически сигнализируют о работе с перегрузкой и останавливают движение ленты при завале башмака элеватора.

Для предотвращения наматывания волокнистых материалов на вращающиеся валы машин необходимо их защищать от непосредственного столкновения с обрабатываемыми материалами путем использования втулок, цилиндрических и конических кожухов, кондукторов, направляющих планок, противонамоточных щитов и т.п. Кроме того, устанавливается минимальный зазор между цапфами вала и подшипниками; ведется систематическое наблюдение за валами, где могут быть наматывания, своевременная очистка их от волокон, защита их специальными противонамоточными острыми ножами, которые разрезают волокно, которое наматывается. Такую защиту имеют, например, трепальные машины на льнозаводах.

Предупреждение перегрева компрессоров при сжатии газов.

Предупреждение перегрева компрессоров обеспечивается делением процесса сжатия газов на несколько ступеней; устройством систем охлаждения газа на каждой ступени сжатия; установкой защитного клапана на нагнетательной линии за компрессором; автоматическим контролем и регулированием температуры сжимаемого газа путем изменения расхода охлаждающей жидкости, подаваемой в холодильники; автоматической системой блокирования, которая обеспечивает отключение компрессора в случае увеличения давления или температуры газа в нагнетательных линиях; очисткой теплообменной поверхности холодильников и внутренних поверхностей трубопроводов от нагаромасляных отложений.

Предотвращение образования источников зажигания при тепловых проявлениях химических реакций

Для предотвращения зажигания горючих веществ в результате химического взаимодействия при контакте с окислителем, водой необходимо знать, во-первых, причины, которые могут привести к такому взаимодействию, во-вторых, химию процессов самовоспламенения и самовозгорания. Знание причин и условий образования опасных тепловых проявлений химических реакций позволяет разрабатывать эффективные противопожарные мероприятия, которые исключают их появление. Поэтому основными противопожарными мероприятиями, которые предупреждают опасные тепловые проявления химических реакций являются:

Надежная герметичность аппаратов, которая исключает контакт веществ, нагретых выше температуры самовоспламенения, а также веществ с низкой температурой самовозгорания с воздухом;

Профилактика самовозгорания веществ путем снижения скорости протекания химических реакций и биологических процессов, а также устранение условий аккумуляции тепла;

Снижение скорости протекания химических реакций и биологических процессов осуществляют разнообразными методами: ограничением влажности при хранении веществ и материалов; снижение температуры хранения веществ и материалов (например зерна, комбикормов) путем искусственного охлаждения; хранение веществ в среде с пониженным содержанием кислорода; уменьшение удельной поверхности контакта самовоспламеняющихся веществ с воздухом (брикетирования, гранулирования порошковидных веществ); применение антиокислителей и консервантов (хранение комбикормов); устранение контакта с воздухом и химически активными веществами (перекисними соединениями, кислотами, щелочами и т.п.) путем раздельного хранения самовоспламеняющихся веществ в герметичной таре.

Зная геометрические размеры штабеля и начальную температуру вещества, можно определить безопасный период их хранения.

Устранение условий аккумуляции тепла осуществляется следующим способом:


  • ограничением размеров штабелей, караванов или куч хранимого вещества;

  • активным вентилированием воздуха (сена и других волокнистых растительных материалов);

  • периодическим перемешиванием веществ при их продолжительном хранении;

  • снижением интенсивности образования горючих отложений в технологическом оборудовании с помощью улавливающих устройств;

  • периодической очисткой технологического оборудования от самовоспламеняющихся горючих отложений;
предупреждение воспламенения веществ при взаимодействии с водой или влагой воздуха. С этой целью обеспечивают их защитой от контакта с водой и влажным воздухом путем изолированного хранения веществ этой группы от других горючих веществ и материалов; поддержкой избыточного количества воды (например, в аппаратах для получения ацетилена из карбида кальция).

Предупреждение воспламенения веществ при контакте друг с другом. Пожары от воспламенения веществ при контакте друг с другом предупреждают раздельным складированием, а также устранением причин их аварийного выхода из аппаратов и трубопроводов.

Исключение воспламенения веществ в результате саморазложения при нагревании или механическом воздействии. Предупреждение воспламенения веществ, предрасположенных к взрывному разложению, обеспечивают путем защиты от нагревания до критических температур, механических воздействий (ударов, трения, давления и т.п.).

Профилактика возникновения источников зажигания от тепловых проявлений электрической энергии

Предупреждение опасных тепловых проявлений электрической энергии обеспечивается:


  • правильным выбором уровня и вида взрывозащиты электродвигателей и аппаратов управления, другого электрического и вспомогательного оборудования в соответствии с классом пожаро- или взрывоопасности зоны, категории и группы взрывоопасной смеси;

  • периодическое проведение испытаний сопротивления изоляции электросетей и электрических машин в соответствии с графиком планово-предупредительного ремонта;

  • защита электрооборудования от токов короткого замыкания (КЗ) (применение быстродействующих предохранителей или автоматических выключателей);

  • предупреждение технологической перегрузки машин и аппаратов;

  • предупреждение больших переходных сопротивлений путем систематического обзора и ремонта контактной части электрооборудования;

  • исключение разрядов статического электричества путем заземления технологического оборудования, повышением влажности воздуха или применением антистатических примесей в наиболее вероятных местах генерирования зарядов, ионизация среды в аппаратах и ограничение скорости движения жидкостей, которые электризуются;

  • защита зданий, сооружений, отдельно стоящих аппаратов от прямых ударов молнии молниеотводами и защитой от вторичных ее воздействий.
Вывод по вопросу:

Не следует пренебрегать мерами пожарной пофилактики на предприятиях. Так как любые сэкономленные средства на противопожарной защите будут несоизмеримо малы в сравнении с убытками от пожара, возникшего по этой причине.

Вывод по занятию:

Исключение воздействия источника зажигания на вещества и материалы является одним из основных мероприятий исключающим возникновение пожара. На тех объектах где не удается исключить пожарную нагрузку, особое внимание уделяется исключению источника зажигания.

Электрические искры довольно часто являются причинами пожаров. Они способны воспламенить не только газы, жидкости, пыли, но и некоторые твердые вещества. В технике электрические - искры часто применяются в качестве источника воспламенения. Механизм воспламенения горючих веществ электрической искрой более сложен, чем воспламенение накаленным телом. При образовании искры в газовом объеме между электродами происходят возбуждение молекул и их ионизация, что влияет на характер протекания химических реакций. Одновременно с этим в объеме шскры происходит интенсивное повышение температуры. В связи с этим были выдвинуты две теории механизма воспламенения электрическими искрами: ионная и тепловая. В настоящее время этот вопрос в достаточной мере все еще не изучен. Исследования показывают, что в механизме воспламенения электрическими искрами участвуют как электрические, так и тепловые факторы. При этом в одних условиях преобладают электрические, в других - тепловые. Учитывая, что результаты исследований и выводы с точки зрения ионной теории не противоречат тепловой, при объяснении механизма воспламенения от электрических искр обычно при держиваются тепловой теории.
Искровой разряд. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния.
Отражение звукового импульса электрической искры от плоской стенки. Фотография получена методом темного поля.| Прохождение звукового импульса через цилиндрическую стенку с отверстиями. Фотография получена методом темного поля. Электрическая искра дает чрезвычайно короткую вспышку; скорость же света неизмеримо больше скорости звука, о величине которой мы будем говорить ниже.
Электрические искры, которые могут появляться при коротком замыкании электропроводки, при проведении электросварочных работ, при искрении электрооборудования, при разрядах статического электричества. Размеры капель металла достигают 5 мм при электросварке и 3 мм при коротком замыкании электропроводки. Температура капель металла при электросварке близка к температуре плавления, а капель металла, образующихся при коротком замыкании электропроводки, выше температуры плавления, например для алюминия она достигает 2500 С. Температуру капли в конце ее полета от источника образования до поверхности горючего вещества принимают в расчетах равной 800 С.
Электрическая искра является наиболее распространенным тепловым импульсом воспламенения. Искра возникает в момент замыкания или размыкания электрической цепи и имеет температуру, значительно превышающую температуру воспламенения многих горючих веществ.
Электрическая искра между электродами получается в результате импульсных разрядов конденсатора С, создаваемых электрическим колебательным контуром. Если между инструментом 1 и деталью 2 в момент разряда будет присутствовать жидкость (керосин или масло), то эффективность обработки повышается вследствие того, что на инструменте не оседают частицы металла, вырванные с анода-детали.
Электрическая искра может рождаться вообще без всяких проводников и сетей.
Характеристики распространения пламени в переходном режиме при искровом зажигании (Олсен и др.. / - водород (успешное зажигание. 2 - пропан (успешное зажигание. 3 - пропан (отказ зажигания. Электрическая искра бывает двух типов, а именно, высокого и низкого напряжений. Высоковольтная искра, создаваемая каким-либо генератором высокого напряжения, пробивает искровой промежуток заранее фиксированного размера. Низковольтная искра проскакивает в точке разрыва электрической цепи, когда при прерывании тока возникает самоиндукция.
Электрические искры являются источниками небольшой энергии, но, как показывает опыт, зачастую могут становиться источниками возгорания. В нормальных рабочих условиях большинство электрических приборов не испускает искр, однако работа определенных устройств обычно сопровождается искрением.
Электрическая искра имеет вид ярко светящегося тонкого канала, соединяющего электроды: канал бывает сложным образом изогнут и разветвлен. В искровом канале перемещается лавина электронов, вызывая резкое повышение температуры и давления, а также характерный треск. В искровом вольтметре сближают шаровые электроды и измеряют расстояние, при котором между шарами проскакивает искра. Молния представляет собой гигантскую электрическую искру.
Принципиальная схема генератора активизированной дуги переменного тока.| Принципиальная схема генератора конденсированной искры.
Электрическая искра представляет собой разряд, создаваемый большой разностью потенциалов между электродами. Вещество электрода поступает в искровой аналитический промежуток в результате взрывообразных выбросов-факелов из электродов. Искровой разряд при большой плотности тока и большой температуре электродов может перейти в высоковольтный дуговой.
Искровой разряд. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния.
Электрическая искра разлагает NHs на составные элементы. При соприкосновении с каталитически активными веществами происходит его частичное разложение уже при сравнительно небольшом нагревании. На воздухе аммиак при обычных условиях не горит; однако существуют смеси аммиака с воздухом, которые при поджигании загораются. Он сгорает также, если его ввести в горящее на воздухе газовое пламя.
Электрическая искра разлагает ГШз на составные элементы. При соприкосновении с каталитически активными веществами происходит его частичное разложение уже при сравнительно небольшом нагревании. На воздухе аммиак при обычных условиях не горит; однако существуют смеси аммиака с воздухом, которые при поджигании загораются. Он сгорает также, если его ввести в горящее на воздухе газовое пламя.
Электрическая искра позволяет успешно производить всевозможные операции - разрезать металлы, делать в них отверстия любой формы и размеров, шлифовать, наносить покрытие, изменять структуру поверхности... Особенно выгодно ею обрабатывать детали весьма сложной конфигурации из металлокерамических твердых сплавов, карбидных композиций, магнитных материалов, высокопрочных жаропрочных сталей и сплавов и других труднообрабатываемых материалов.
Электрическая искра, возникающая между контактами при разрыве цепи, гасится не только путем ускорения разрыва; этому способствуют также газы, выделяемые фиброй, из которой сделаны прокладки 6, специально уложенные в одной плоскости с подвижным контактом.
Принципиальная схема системы зажигания.| Схема батарейной системы зажигания. Электрическая искра получается в результате подачи импульса тока высокого напряжения на электроды свечи. Прерыватель обеспечивает размыкание контактов в соответствии с последовательностью тактов, а распределитель 4 - подачу импульсов высокого напряжения в соответствии с порядком работы цилиндров.
Установка для ультразвуковой очистки стеклянных деталей с вакуумированием рабочей камеры. Электрическая искра снимает тонкий слой стекла с обрабатываемой поверхности. При продувании через эту дугу инертный газ (аргон) частично ионизируется и молекулы загрязнений разрушаются под действием ионной бомбардировки.
Электрические искры в ряде случаев могут привести к взрывам и пожарам. Поэтому рекомендуется те части установок или машин, на которых наблюдается накопление зарядов электростатического электричества, специально соединять металлической проволокой с землей, давая тем самым электрическим зарядам свободный проход от машины в землю.
Электрическая искра состоит из быстро распадающихся атомов воздуха или другого изолятора и поэтому представляет собою очень короткое время существующий хороший проводник. Кратковременность искрового разряда долго очень затрудняла его изучение, и лишь сравнительно недавно удалось установить главнейшие законы, которым он подчиняется.
Искровой разряд. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторого определенного значения Ек (критическая напряженность поля, или напряженность пробоя), которая зависит от рода газа и его состояния.

Обычная электрическая искра, проскакивая в приборе-генераторе, рождала, как и предполагал ученый, похожую искру в другом приборе, изолированном и удаленном от первого на несколько метров. Так впервые было обнаружено предсказанное. Максвеллом свободное электромагнитное поле, способное передавать сигналы без всяких проводов.
Вскоре электрическая искра воспламеняет спирт, фосфор и, наконец, порох. Опыт переходит в руки фокусников, становится гвоздем цирковых программ, повсеместно возбуждая жгучий интерес к таинственному агенту - электричеству.
Температуры пламен различных газовых смесей. Высоковольтная электрическая искра представляет собой электрический разряд в воздухе при нормальном давлении под действием высокого напряжения.
Электрической искрой называют также форму прохождения электрического тока через газ при высокочастотном разряде конденсатора через короткий разрядный промежуток и контур, содержащий самоиндукцию. В этом случае в течение значительной доли полупериода высокочастотного тока разряд представляет собой дуговой разряд переменного режима.
Пропуская электрические искры через атмосферный воздух, Кавендиш нашел, что азот окисляется кислородом воздуха в окись азота, которая может быть переведена в азотную кислоту. Следовав льно, решает Тимирязев, сжигая азот воздуха, можно получить азотнокислые соли, которые легко заменят на полях чилийскую селитру и повысят урожай: ерновых культур.
Пропуская электрические искры через атмосферный воздух, Кавендиш нашел, что азот окисляется кислородом воздуха в окись азота, которая может быть переведена в азотную кислоту. Следовательно, решает Тимирязев, сжигая азот воздуха, можно получить азотнокислые соли, которые легко заменят на полях чилийскую селитру и повысят урожай: ерновых культур.
От электрических искр в проводах возбуждаются высокочастотные токи. Они распространяются вдоль проводов и излучают в окружающее пространство электромагнитные волны, мешающие радиоприему. Эти помехи попадают в приемник различными путями: 1) через антенну приемника, 2) через провода осветительной сети, если приемник сетевой, 3) путем индукции от осветительных или каких-либо других проводов, по которым распространяются мешающие волны.
Действие электрической искры на горючие смеси очень сложно.
Получение электрической искры необходимой интенсивности при батарейном зажигании не ограничивается минимальным числом оборотов, а при зажигании от магнето без ускорительной муфты обеспечивается примерно при 100 об / мин.
Воспламенение электрической искрой по сравнению с другими способами требует минимальной энергии, так как малый объем газа на пути искры нагревается ею до высокой температуры за предельно короткое время. Минимальная энергия искры, необходимая для воспламенения взрывоопасной смеси при ее оптимальной концентрации, определяется экспериментально. Она приводится к нормальным атмосферным условиям - давлению 100 кПа и температуре 20 С. Обычно минимальная энергия, необходимая для воспламенения пылевоздушных взрывоопасных смесей, на один-два порядка выше энергии, необходимой для воспламенения газо - и паровоздушных взрывоопасных смесей.
Включатель зажигания. При пробое электрическая искра испаряет тонкий слой металла, нанесенного на бумагу, и вблизи места пробоя бумага очищается от металла, а отверстие пробоя заполняется маслом, что и восстанавливает работоспособность конденсатора.
Наиболее опасны электрические искры: почти всегда их время действия и энергия достаточны для воспламенения горючих смесей.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарово го разрядни-к а, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разлоеть потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам.
От действия электрической искры разлагается с увеличением объема. Хлористый метил - сильное реакционноспособ-ное органическое соединение; большая часть реакций с хлористым метилом состоит в замене атомов галоида на различные радикалы.
При пропускании электрических искр через жидкий воздух азотистый ангидрид образуется в виде голубого порошка.
Чтобы избежать электрической искры, необходимо разъединяемые части газопровода соединить перемычкой и установить заземление.
Изменение концентрационных пределов воспламенения от мощности искры. Увеличение мощности электрических искр ведет к расширению области воспламенения (взрыва) газовых смесей. Однако и здесь существует своя граница, когда дальнейшее изменение пределов воспламенения не происходит. Искры такой мощности принято называть насыщенными. Использование их в приборах по определению концентрационных и температурных пределов воспламенения, температуры вспышки и других величин дает результаты, не отличающиеся от воспламенения накаленными телами и пламенем.
При пропускании электрической искры через смесь фтористой серы и водорода образуются H2S и HF. Смеси S2F2 с сернистым газом образуют в тех же условиях фтористый тионил (SOF2), а смеси с кислородом-смесь фтористого тионила и сернистого газа.
При пропускании электрических искр через воздух в закрытом сосуде над водой происходит большее уменьшение объема газа, чем при сжигании в нем фосфора.
Величина энергии электрической искры, необходимая для инициирования взрывного разложения ацетилена, сильно зависит от давления, возрастая при его уменьшении. Согласно данным С. М. Когарко и Иванова35, взрывное разложение ацетилена возможно даже при абсолютном давлении 0 65 от, если энергия искры равна 1200 дж. Под атмосферным давлением энергия инициирующей искры составляет 250 дж.
В отсутствие электрической искры или таких легковозгорающихся примесей, как, например, жир, реакции обычно протекают заметно только при высоких температурах. Этфоран C2Fe медленно реагирует с разбавленным фтором при 300 , в то время как к-гептфоран реагирует бурно при зажигании смеси электрической искрой.
При пропускании электрических искр через кислород или воздух появляется характерный запах, причиной которого является образование нового вещества - озона. Озон можно получить из совершенно чистого ухого кислорода; отсюда следует, что он состоит только из кислорода и представляет собой его аллотропическое видоизменение.
Энергия такой электрической искры может оказаться достаточной для воспламенения горючей или взрывоопасной смеси. Искровой разряд при напряжении 3000 В может вызвать воспламенение почти всех паро - и газовоздушных смесей, а при 5000 В - воспламенение большей части горючих пылей и волокон. Таким образом, возникающие в производственных условиях электростатические заряды могут служить источником зажигания, способным при наличии горючих смесей вызвать пожар или взрыв.
Энергия такой электрической искры может оказаться достаточно большой для воспламенения горючей или взрывоопасной смеси.
При пропускании электрических искр через кислород образуется озон - газ, в состав которого входит один только элемент - кислород; озон обладает плотностью в 1 5 раза большей, чем кислород.
При проскакивании электрической искры в воздушном промежутке между двумя электродами возникает ударная волна. При воздействии этой волны на поверхность калибровочного блока или непосредственно на ПАЭ в последнем возбуждается упругий импульс длительностью порядка нескольких микросекунд.

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала - до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями - от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов - возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал - стример, по которому устремляется от катода к аноду мощный поток электронов - происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями - электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду - аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.

В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

  • тлеющий разряд;
  • искровой разряд;
  • дуговой разряд;
  • коронный разряд.
  • 1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

    Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

    При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

    Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала .

    В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

    Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

    Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

    Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

    Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

    2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами .

    Т газа = 10 000 К

    ~ 40 см I = 100 кА t = 10 –4 c l ~ 10 км

    После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

    В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 10 4 – 10 5 А, длиной 20 км (рис. 8.7).

    3. Дуговой разряд . Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

    ~ 10 3 А
    Рис. 8.8

    При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

    4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

    Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙10 6 В/м, вокруг него возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.