Рабочая программа оптимизация работы насосных станций. Автоматизация работы дожимной насосной станции


Размер: px

Начинать показ со страницы:

Транскрипт

1 УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Насосы и насосные станции (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет Кафедра Инженерное обеспечение зданий и сооружений Институт инженерной экологии Водоснабжения, водоотведения и гидротехники

2 СОДЕРЖАНИЕ 1. Цели и задачи изучения дисциплины Цель преподавания дисциплины Задачи изучения дисциплины Межпредметная связь Требования к результатам освоения дисциплины Объем дисциплины и виды учебной работы Содержание дисциплины Разделы дисциплины и виды занятий в часах (тематический план занятий) Содержание разделов и тем лекционного курса Практические занятия Лабораторные занятия Самостоятельная работа Учебно-методические материалы по дисциплине Основная и дополнительная литература, информационные ресурсы Перечень наглядных и других пособий, методических указаний и материалов к техническим средствам обучения Контрольно-измерительные материалы... 11

3 1.1. Цель преподавания дисциплины 1. Цели и задачи изучения дисциплины формирования знаний по основным видам насосов, компрессоров, технологического оборудования; формирования навыков по проектированию, строительству и эксплуатации насосных и воздуходувных станций, систем водоснабжения и водоотведения. 1.. Задачи изучения дисциплины подготовка бакалавров к проектно-конструкторской, производственно-технологической, научной деятельности и эксплуатации насосных и воздуходувных станций систем водоснабжения и водоотведения Межпредметная связь Дисциплина «Насосы и насосные станции» относится к вариативной части профессионального цикла. Профиль «Водоснабжение и водоотведение», основная часть. Дисциплина «Насосные и воздуходувные станции» основывается на знаниях, полученных при освоении дисциплин: «Математика», «Физика», «Гидравлика», «Теоретическая механика», «Архитектура», «Черчение», «Сопротивление материалов», «Строительные материалы», «Инженерная геодезия», «Электротехника». Требования к входным знаниям, умениям и компетенциям студентов. Студент должен: Знать: основные исторические события, основы правовой системы, нормативно-технические документы в сфере профессиональной деятельности; фундаментальные законы высшей математики, химии, физики, гидравлики, электротехники, теоретической механики, сопротивления материалов; Уметь: самостоятельно приобретать дополнительные знания по учебной и справочной литературе; применять знания, полученные при изучении предшествующих дисциплин; пользоваться персональным компьютером; Владеть: навыками решения математических задач; графоаналитическими методами исследования; методами постановки и решения инженерных задач. Дисциплины, для которых дисциплина «Насосы и насосные станции» является предшествующей: дисциплины профильной направленности: «Водопроводные сети», «Водоотводящие сети», «Водоподготовка и водозаборные сооружения», «Водоотведение и очистка сточных вод», «Санитарно-техническое оборудование зданий и сооружений», «Теплогазоснабжение с основами теплотехники», «Основы промышленного водоснабжения и водоотведения», «Основы промышленного водоотведения», «Эксплуатация сооружений систем водоснабжения и водоотведения», «Реконструкция сооружений систем водоснабжения и водоотведения».

4 1.4. Требования к результатам освоения дисциплины Процесс изучения дисциплины «Отопление» направлен на формирование следующих компетенций: владением культурой мышления, способностью к обобщению, анализу, восприятию информации, постановки цели и выбору путей её достижения (ОК-1); умением логически верно, аргументировано и ясно строить устную и письменную речь (ОК-); умением использовать нормативные правовые документы в своей деятельности (ОК-5); использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1); способностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физикоматематический аппарат (ПК-); владением основными методами, способами и средствами получения, хранения, переработки информации, навыками работы с компьютером как средством управления информации (ПК-5); знанием нормативной базы в области инженерных изысканий, принципов проектирования зданий, сооружений, инженерных систем и оборудования, планировки и застройки населённых мест (ПК-9); владением методами проведения инженерных изысканий, технологией проектирования деталей и конструкций в соответствии с техническим заданием с использованием стандартных прикладных расчётных и графических программных пакетов (ПК-10); способностью проводить предварительное технико-экономическое обоснование проектных расчётов, разрабатывать проектную и рабочую техническую документацию, оформлять законченные проектно-конструкторские работы, контролировать соответствие разрабатываемых проектов и технической документации заданию, стандартам, техническим условиям и другим нормативным документам (ПК-11); владением технологией, методами доводки и освоения технологических процессов строительного производства, производства строительных материалов, изделий и конструкций, машин и оборудования (ПК-1); способностью вести подготовку документации по менеджменту качества и типовыми методами контроля качества технологических процессов на производственных участках, организацию рабочих мест, их техническое оснащение, размещение технологического оборудования, осуществлять контроль соблюдения технологической дисциплины и экологической безопасности (ПК-13); знанием научно-технической информации, отечественного и зарубежного опыта по профилю деятельности (ПК-17); владением математическим моделированием на базе стандартных пакетов автоматизации проектирования и исследований, методами постановки и проведения экспериментов по заданным методикам (ПК-18); способностью составлять отчёты по выполненным работам, участвовать во внедрении результатов исследования и практических разработок (ПК-19); знанием правила и технологии монтажа, наладки, испытания и сдачи в эксплуатацию конструкций, инженерных систем и оборудования строительных объектов, образцов продукции, выпускаемой предприятием (ПК-0); владением методами опытной проверки оборудования и средств технологического обеспечения (ПК-1). В результате освоения дисциплины студент должен: Знать: виды и конструкции основного оборудования насосных и воздуходувных станций; виды и конструкции сооружений насосных и воздуходувных станций;

5 основы проектирования и строительства насосных и воздуходувных станций. Уметь: обосновано принимать проектные решения по составу технологического оборудования насосных и воздуходувных станций как элементов системы, для которой заданы требования потребителей по надёжности и условиям подачи воды, воздуха и режимам эксплуатации. Владеть: навыками монтажа, строительства и эксплуатации основного технологического оборудования и сооружений насосных и воздуходувных станций.

6 . Объем дисциплины и виды учебной работы Вид учебной работы Всего зачетных единиц (часов) Общая трудоемкость дисциплины 68 Аудиторные занятия: 40 лекции 0 практические занятия (ПЗ) 0 семинарские занятия (СЗ) - лабораторные работы (ЛР) - другие виды аудиторных занятий - промежуточный контроль тестирование Самостоятельная работа: 8 изучение теоретического курса (ТО) - курсовой проект - расчетно-графические работы (РГР) - реферат 8 задачи - задания другие виды самостоятельной работы - Вид промежуточного контроля (зачет, экзамен) зачёт

7 3. Содержание дисциплины 3.1. Разделы дисциплины и виды занятий в часах (тематический план занятий) п/п Модули и разделы дисциплины Насосы Назначение, принцип действия и области применения насосов различных видов Рабочий процесс лопастных насосов Характеристики работы лопастных насосов, совместная работа насосов и сетей 4. Конструкции насосов, применяемых для водоснабжения и водоотведения Насосные станции Типы насосных станций систем водоснабжения и водоотведения Водопроводные насосные станции Насосные станции систем водоотведения Лекции, зачетных единиц (часов) ПЗ или СЗ, зачетных единиц (часов) ЛР, зачетных единиц (часов) Самост. работа, зачетных единиц (часов) Реализуемые компетенции ПК-1, ПК-5, ПК-9, ПК-10, ПК-11, ПК-1 ПК-13, ПК-17, ПК-18, ПК-19, ПК-0, ПК ПК-1, ПК-5, ПК-9, ПК-10, ПК-11, ПК ПК-13, ПК-17, ПК-18, ПК-19, ПК-0, ПК-1 Итого Содержание разделов и тем лекционного курса темы лекции раздела Содержание лекции Кол-во часов (зач. ед) Самостоятельная работа Основные параметры и классификация Изучение теоретического насосов. Достоинства и недостатки курса. Проработка конспекта 1 насосов различных типов. Схемы лекций. Работа со устройства и принцип действия специальной литературой. лопастных насосов, насосов трения, Подготовка к текущей объёмных насосов. аттестации (КСР). Давление и напор, развиваемый 1 центробежным насосом. Мощность и КПД насоса. То же

8 Кинематика движения жидкости в рабочих органах центробежного насоса. Основное уравнение центробежного насоса. Подобие 1 насосов. Формулы пересчёта и То же коэффициент быстроходности. Высота всасывания насосов. Кавитация в насосах. Допустимые значения высоты всасывания. 4 Характеристики центробежных насосов. Способы получения 1 характеристик. Совместная То же характеристика работы насоса и трубопровода. Испытания насосов. 5 Параллельная и последовательная 1 работа насосов. Конструкции насосов: центробежных, осевых, диагональных, скважинных, вихревых. Объёмные и шнековые насосы. То же 6 Классификация и типы насосных Выполнение письменной станций. Состав оборудования и контрольной работы помещений насосных и воздуходувных (реферат). станций. 7 Специфические особенности водопроводных насосных станций. Изучение теоретического курса. Проработка конспекта Основные конструктивные решения лекций. Работа со зданий насосных станций. Назначение специальной литературой.. и особенности проектирования насосных станций -1-го и -го подъёма. Подготовка к текущей аттестации (КСР Классификация насосных станций систем водоотведения. Схемы устройства, назначение. Особенности проектирования насосных станций систем водоотведения. Определение ёмкости приёмных резервуаров. Размещение насосных агрегатов. Особенности строительства насосных станций систем водоотведения. Эксплуатация воздуходувных и насосных станций. Техникоэкономические показатели работы насосных станций. Итого: 0 Выполнение письменной контрольной работы (реферат) То же То же

9 3.3. Практические занятия п/п раздела дисциплины Наименование практических занятий Объем в часах Назначение и технические характеристики насосов Классификация и характеристики насосов. Рабочая часть 1 1 характеристики насосов. Стабильная и нестабильная характеристики насосов. Пологие, нормальные, крутопадающие характеристики. Определение крутизны характеристики. Совместная работа насосов и трубопроводов Построение совместной характеристики работы насосов и 1 трубопроводов. Графическая характеристика Q-H трубопровода. Построение приведённой характеристики Q-H центробежного насоса. Определение режимной точки работы насоса в системе трубопроводов. Изменение энергетических характеристик центробежного 3 1 насоса при изменении диаметра и частоты вращения рабочего колеса насоса Рабочие поля характеристик Q-H насоса. Формулы пересчёта. 4 1 Определение геометрической высоты всасывания насоса (ч.1) Определение геометрической высоты всасывания насоса при установке насоса выше уровня жидкости в приёмном резервуаре, ниже уровня жидкости в приёмном резервуаре (насос установлен под заливом), в случае, когда жидкость в приёмном резервуаре находится под избыточным давлением. 5 1 Определение геометрической высоты всасывания насоса (ч.) Определение геометрической высоты всасывания насоса с учётом геодезической отметки установки насоса и с учётом температуры перекачиваемой воды. Выбор основного оборудования водопроводных насосных станций 67 Расчёт подачи насосной станции -го подъёма по ступенчатому и интегральному графикам водопотребления. Влияние вместимости 4 напорно-регулирующей ёмкости на режим работы насосной станции. Определение расчётного напора насосной станции и количества рабочих и резервных насосов. 7 Режим работы насосной станции водоотведения Расчёт подачи и напора насосной станции и вместимости приёмного резервуара. Выбор рабочих и резервных агрегатов. Построение графика часового притока и откачки, расчёт частоты включения насосов в зависимости от вместимости приёмного резервуара. Определение отметки оси насоса при условии его 8 бескавитвционной работы Определение отметки оси насоса. Проверка кавитационного запаса. 9 Учебно-ознакомительная экскурсия на насосные станции Итого: 0

10 3.4. Лабораторные занятия п/п раздела дисциплины Наименование лабораторных работ Объем в часах 3.5. Самостоятельная работа Для приобретения студентами практических навыков в выборе гидромеханического специального оборудования и проектирования сооружений для перекачивания вод предусматривается выполнение курсового проекта. Результатом самостоятельной работы является написание реферата. Данный вид работы составляет 8 часов. Организация самостоятельной работы производиться в соответствии с графиком учебного процесса и самостоятельной работы студентов.

11 4. Учебно-методические материалы по дисциплине 4.1. Основная и дополнительная литература, информационные ресурсы а) основная литература 1. Карелин В.Я., Минаев А.В. Насосы и насосные станции. М.: ООО «Бастет», Шевелёв Ф.А., Шевелёв А.Ф. Таблицы для гидравлического расчёта водопроводных труб. М.: ООО «Бастет», Лукиных А.А., Лукиных Н.А. Таблицы для гидравлического расчёта канализационных сетей и дюкеров по формуле акад. Н.Н. Павловского. М.: ООО «Бастет», Проектирование канализационной насосной станции: учебное пособие/б.м. Гришин, М.В.Бикунова, Саранцев В.А., Титов Е.А., Кочергин А.С. Пенза: ПГУАС, 01. б) дополнительная литература 1. Сомов М.А., Журба М.Г. Водоснабжение. М.: Стройиздат, Воронов Ю.В., Яковлев С.Я. Водоотведение и очистка сточных вод. М.: Изд-во АСВ, Справочник строителя. Монтаж систем внешнего водоснабжения и канализации./под ред. А.К.Перешивкина/. М.: Стройиздат, Водоснабжение и водоотведение. Наружные сети и сооружения. Под ред. Репина Б.Н. М.: Изд-во АСВ, 013. в) программное обеспечение 1. пакет электронных тестов 170 вопросов;. электронный курс лекций «Насосные и воздуходувные станции»; 3. Программа AUTOCAD, RAUCAD, MAGICAD; г) базы данных, информационно-справочные и поисковые системы 4. электронные каталоги насосов; 5. образцы типовых проектов насосных станций; 6. поисковые системы: YANDEX, MAIL, GOOGLE и др. 7. Интернет сайты: и др. 4.. Перечень наглядных и других пособий, методических указаний и материалов к техническим средствам обучения Материально техническая база дисциплины включает: лабораторию со стендом для проведения лабораторных работ оснащённую необходимыми контрольно-измерительными приборами, аппаратурой и насосными агрегатами. компьютерный класс для проведения лабораторных работ с использованием имитаторов Контрольно-измерительные материалы Контрольно-измерительные материалы: перечень вопросов к экзамену и экзаменационные билеты. Пример типовых тестовых заданий по дисциплине «Насосы и насосные станции»: 1. Что учитывает коэффициент полезного действия? а) степень надежности работы насоса; б) все виды потерь, связанных с преобразованием насосом механической энергии двигателя в энергию движущейся жидкости; в) потери, обусловленные перетеканием воды через зазоры между корпусом и рабочим колесом. Правильный ответ б.. Что представляет собой напор насоса? а) работу производимую насосом в единицу времени; б) приращение удельной энергии жидкости на участке от входа в насос до выхода из него; в) удельную энергию жидкости на выходе из насоса.

12 Правильный ответ б. 3. Напор насоса измеряется а) в метрах столба перекачиваемой насосом жидкости, м; б) в м 3 /с; в) в м 3. Правильный ответ а. 4. Что называется объемной подачей насоса? а) объем жидкости, подаваемый насосом в единицу времени; б) масса жидкости, перекачиваемая насосом в единицу времени; в) вес перекачиваемой жидкости в единицу времени. Правильный ответ а. 5. Какие насосы относятся к группе динамических? а) центробежные насосы; б) поршневые насосы; в) плунжерные насосы. Правильный ответ а. 6. Какие насосы относятся к группе объемных? а) центробежные; б) вихревые; в) поршневые. Правильный ответ в. 7. Работа каких насосов основана на общем принципе силовом взаимодействии лопастей рабочего колеса с обтекающим их потоком перекачиваемой жидкости? а) диафрагменных; б) поршневых; в) центробежных, осевых, диагональных. Правильный ответ в. 8. Основной рабочий орган центробежного насоса? а) рабочее колесо; б) вал; в) корпус насоса. Правильный ответ а. 9. Под действием какой силы жидкость выбрасывается из рабочего колеса центробежного насоса? а) под действием силы тяжести; б) под действием центробежной силы; в) под действием силы Кариолиса. Правильный ответ б. 10. По компоновке насосного агрегата (расположению вала) центробежные насосы подразделяются а) на одноступенчатые и многоступенчатые; б) с односторонним подводом и двусторонним подводом; в) на горизонтальные и вертикальные. Правильный ответ в.


Направление подготовки РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.3. «Насосы и насосные станции» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) 08.03.01 Строительство (шифр и наименование

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Водоснабжение и водоотведение (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Реконструкция сетей водоснабжения и водоотведения (наименование дисциплины в соответствии с учебным планом) Программа

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Эксплуатация сетей водоснабжения и водоотведения (наименование дисциплины в соответствии с учебным планом) Программа

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Санитарно-техническое оборудование зданий (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

ПРИМЕРНАЯ ПРОГРАММА МОДУЛЯ ИНЖЕНЕРНЫЕ СИСТЕМЫ ЗДАНИЙ И СООРУЖЕНИЙ (ТГВ, ВИВ, ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОСНАБЖЕНИЕ, И ВЕРТИКАЛЬНЫЙ ТРАНСПОРТ) Рекомендуется для направления подготовки специальности 270800

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Насосы, вентиляторы и компрессоры в системах ТГВ (наименование дисциплины в соответствии с учебным планом) Программа

РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.1.2 «Основы водоснабжения и водоотведения населенных пунктов» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.03.01

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Метрология, стандартизация и сертификация (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Теплогазоснабжение и вентиляция (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Безопасность зданий и сооружений в сложных природных и природно-техногенных условиях (наименование дисциплины в соответствии

СОДЕРЖАНИЕ 1. Цели и задачи изучения дисциплины... 3 1.1 Цель преподавания дисциплины... 3 1.2 Задачи изучения дисциплины... 3 1.3 Межпредметная связь... 4 2. Объем дисциплины и виды учебной работы...

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Централизованное теплоснабжение (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Организация, планирование и управление строительством (наименование дисциплины в соответствии с учебным планом) Программа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ Государственное образовательное учреждение высшего профессионального образования «ДОНБАССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ»

1. Цель второй производственной практики: - ознакомление студентов 3 курса со специальностью «Водоснабжение и водоотведение» на объектах, где эксплуатируются сети, системы и устройства водоснабжения и

РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.2.2 «Эксплуатация систем и сооружений водоснабжения и водоотведения» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки

2 Визирование РПД для исполнения в очередном учебном году Утверждаю: Проректор по УР 2016 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2016-2017 учебном году на заседании кафедры

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА дисциплины М2.В.ДВ.2.1 «Проектное дело» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01 «Строительство» (шифр и наименование

Аннотация УМКД УМКД представляет собой совокупность нормативно-методических документов и учебно-методических материалов, обеспечивающих реализацию ООП в образовательном процессе и способствующих эффективному

М и н и с т е р с т в о о б р а з о в а н и я и н а у к и А с т р а х а н с к о й о б л а с т и Г A О У А О В П О «А с т р а х а н с к и й и н ж е н е р н о - с т р о и т е л ь н ы й и н с т и т у т» РАБОЧАЯ

Направление подготовки РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.15.2 «Водопроводные сети» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) 08.03.01 Строительство (шифр и наименование

Цели освоения дисциплины В результате освоения данной дисциплины бакалавр приобретает знания, умения и навыки, обеспечивающие достижение целей Ц, Ц2, Ц4, Ц5 основной образовательной программы «Теплоэнергетика

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Строительная информатика (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет

Аннотация дисциплины «Основы гидравлики и теплотехники» 1. Цель дисциплины Дисциплина «Основы гидравлики и теплотехники» обеспечивает функциональную связь с базовыми дисциплинами и имеет свою цель приобретение

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Целью дисциплины «Теплогазоснабжение и вентиляция» является: освоение основы технической термодинамики и теплопередачи, получение знаний студентами по конструкциям, принципам

РАБОЧАЯ ПРОГРАММА дисциплины М2.В.ОД.4 «Проектирование современных систем вентиляции» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01 «Строительство»

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Кондиционирование воздуха и холодоснабжение (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

РАБОЧАЯ ПРОГРАММА дисциплины Б2.В.ДВ.2.1 «Прикладные задачи теоретической механики» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.03.01 Строительство

РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.4.1 «Динамический расчет и обеспечение устойчивости зданий и сооружений при строительстве и эксплуатации» (индекс и наименование дисциплины в соответствии с ФГОС ВПО

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Сибирский федеральный университет» Инженерно-строительный (наименование института) Инженерных систем

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования УТВЕРЖДАЮ Декан строительного факультета В.А. Пименов..20 Рабочая программа дисциплины АВТОМАТИЗИРОВАННОЕ

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Целью дисциплины «Механика жидкости и газа» является развитие и закрепление у студентов способности самостоятельно выполнять аэродинамические и гидравлические инженерные расчеты

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Инженерная геодезия (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Целями освоения дисциплины Промбезопасность являются: приобретение студентами знаний в области Промбезопасности опасных производственных объектов. 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ

Негосударственное образовательное учреждение высшего профессионального образования «Камский институт гуманитарных и инженерных технологий» Факультет «Нефти и газа» Кафедра «Инженерные и технические дисциплины»

Лекция 3 Характеристики насоса. Изменение характеристик насосов. .8. Характеристики насоса Характеристикой насоса называется графически выраженная зависимость основных энергетических показателей от подачи

РАБОЧАЯ ПРОГРАММА дисциплины М2.Б.3 «Методы решения научно-технических задач в строительстве» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01

ПРИМЕРНАЯ ПРОГРАММА ДИСЦИПЛИНЫ ИНЖЕНЕРНАЯ ГРАФИКА Рекомендуется для направления подготовки специальности 70800 «СТРОИТЕЛЬСТВО» Квалификация (степень) выпускника бакалавр Москва 010 1. Цели и задачи дисциплины:

РАБОЧАЯ ПРОГРАММА дисциплины М1.В.ДВ.1.1 «Планирование и обработка результатов эксперимента» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01

«УТВЕРЖДАЮ» Заведующий кафедрой ТиО ОМД С.В. Самусев 2016г. АННОТАЦИЯ ДИСЦИПЛИНЫ 1. НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ: «ПРОИЗВОДСТВЕННАЯ ПРАКТИКА» 2. НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.03.02 «ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ»

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ 1. Цели и задачи дисциплины. Целью освоения дисциплины «Основы промышленных производств» являются приобретение студентами знаний о важнейших современных промышленных технологиях

Аннотация рабочей программы дисциплины УЧЕБНАЯ ГЕОДЕЗИЧЕСКАЯ ПРАКТИКА Место дисциплины в учебном плане Б5 Название кафедры Автомобильные дороги Разработчик программы Хоренко О.П. старший преподаватель

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Планирование и организация экспериментальных исследований (наименование дисциплины в соответствии с учебным планом)

Б1 Дисциплины (модули) Б1.Б.1 История 59 ОК-2 ОК-6 ОК-7 Б1.Б.2 Философия 59 ОК-1 ОК-6 Б1.Б.3 Иностранный язык 50 ОК-5 ОК-6 ОПК-9 Б1.Б.4 Правоведение (основы законодательства в) Б1.Б.5 Экономика 17 ОК-3

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ «НАСОСЫ И ВОЗДУХОДУВНЫЕ СТАНЦИИ» Целью освоения дисциплины «Насосы и воздуходувные станции» является приобретение знаний об основных конструкциях насосов и воздуходувных станций,

1 Общие положения Описание образовательной программы 1.1 Цель, реализуемая ОП ВО Целью образовательной программы академического бакалавриата 08.03.01.04 «Производство и применение строительных материалов,

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Современные конструктивные системы (наименование дисциплины в соответствии с учебным планом) Программа повышения квалификации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Кафедра «Транспортное строительство» АННОТАЦИЯ

Программы учебной и производственной практик При реализации данной ОПОП предусматриваются следующие виды практик: Геодезическая Геологическая Ознакомительная Производственная Строительные машины Технологическая

Направление подготовки РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ОД.6 «Строительная механика» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) 08.03.01 Строительство (шифр и наименование

ПРОГРАММА Наименование дисциплины: «Теплогазоснабжение и вентиляция» Рекомендуется для подготовки направления (специальности) 08.03.01 «Строительство» Квалификация (степень) выпускника в соответствии с

Аннотация к рабочей программе дисциплины «Организация, планирование и управление в строительстве» направление подготовки бакалавров 08.03.01 «Строительство» (профиль «Промышленное и гражданское строительство»)

Развернутый учебный план бакалавриата по направлению 7000. "Строительство" профиль "Автомобильные дороги" (очная форма обучения) п/п Наименование дисциплин (в том числе практик) Зачетные единицы Трудоемкость

ОБЩАЯ ХАРАКТЕРИСТИКА ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ (ОПОП) Код и наименование направления 08.03.01 Строительство Квалификация, присваиваемая Бакалавр выпускникам Профиль или магистерская

2 Содержание 1. Компетентностная модель выпускника... 4 1.1 Характеристика и виды профессиональной деятельности выпускника... 4 1.1.1 Область профессиональной деятельности выпускников... 4 1.1.2 Объекты

1. Цели и задачи дисциплины: Цель дисциплины: Получение знаний, умений и навыков по построению и чтению проекционных чертежей и чертежей строительных объектов, отвечающих требованиям стандартизации и унификации;

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИ ЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Новосибирский государственный архитектурно-строительный университет

апрель 2001 г.

В одной из публикаций ("ЖКХ", N 3/2001), где речь шла о вопросах экономической эффективности внедрения информационных технологий на предприятиях инженерных сетей, мы вскользь упоминали об оптимизации оперативного управления насосными станциями и регулирования запасов воды в резервуарах. В частности, было отмечено, что в структуре себестоимости водоснабжения львиная доля приходится на электроэнергию, и снижение затрат за счет оптимизации режимов работы насосных агрегатов позволяет получить весьма существенную экономию. Целью данной статьи является более подробное освещение этого вопроса.

У проблемы оптимизации управления режимами водоснабжения есть несколько составляющих, каждая из которых носит достаточно изолированный характер и способна дать хороший экономический эффект, а будучи рассматриваемы в комплексе, они в состоянии вывести технологический процесс на качественно новый уровень. Рассмотрим эти составляющие.

    Управление насосными агрегатами. Существует и применяется на практике несколько видов регулирования подач: включение/выключение групп насосов и отдельных агрегатов (дискретное управление); дросселирование и рециркуляция потока; применение электропривода с переменной частотой вращения. Каждый насосный агрегат имеет свою фактическую расходно-напорную характеристику, . каждой точке которой соответствует некоторое паспортное значение потребляемой мощности электродвигателя. Именно выбор комбинации работающих насосных агрегатов и способа регулирования в зависимости от гидравлической характеристики сети и требуемых значений подач определяет положение текущей рабочей точки, а следовательно, и текущее значение потребляемой мощности по каждому агрегату и всей насосной станции в целом. Следовательно, критерием оптимизации является обеспечение заданного режима работы насосной станции по подачам и давлениям при минимально возможном расходе электроэнергии с учетом всех доступных способов регулирования. Основных проблем две: идентификация и "пересчет" реальных характеристик насосных агрегатов (они, как правило, не соответствуют паспортным, и, кроме того, изменяются с течением времени в силу естественного износа), а также расчет и построение совокупной характеристики "расход-напор-мощность" для группы работающих насосов по известным характеристикам каждого из них. Обе проблемы легко решаемы при наличии средств измерений для проведения время от времени натурных испытаний насосных агрегатов, а также соответствующего компьютерного математического обеспечения. Сама по себе оптимизация регулирования п этом не вызывает принципиальных сложностей - методы и алгоритмы решения таких задач разработаны достаточно давно и проверены практикой, достаточно эти методы знать и уметь применить. Результатом решения задачи оптимизации в каждый конкретный момент времени является выработка рекомендации по осуществлению такого комплекса управляющих воздействий (включение/отключение агрегатов, изменение положения дросселирующего клапана, изменение частоты вращения электродвигателей), который переводит текущую рабочую точку совокупной характеристики насосной станции к значению, которому соответствуют минимально достижимая при этом потребляемая электрическая мощность приводов насосов. При наличии технических средств телеметрии и дистанционного управления эти оптимальные управляющие воздействия могут осуществляться автоматически, с некоторым заданным интервалом времени. При отсутствии средств телеуправления полученные от компьютерной программы рекомендации выполняются диспетчерским персоналом в обычном "ручном" режиме, а сама оптимизация выполняется каждый раз при существенном изменении требуемых режимных параметров. Побочным полезным эффектом при этом является сохранение и возможность анализа электронного журнала значений параметров работы насосной станции и "истории" управляющих воздействий.

    Управление запасами воды в резервуарах на основе статистических данных и прогноза водопотребления. Специалистами нашей компании создана уникальная в своем роде математическая модель прогнозирования водопотребления на основе накапливаемых данных по подачам и уровням воды в резервуарах. "Изюминкой" модели является специальный учет так называемых "нерегулярных дней", описание которых "не укладывается" в рамки обычного календарного временного ряда. Их особенность состоит в том, что они повторяются из года в год, приходясь каждый раз на различные дни недели (официальные и неофициальные праздники и связанные с ними переносы рабочих дней), или даже на различные недели и месяцы (в частности, религиозные праздники, такие как Пасха). В математической модели прогноза учитываются, кроме того, метеорологические данные и некоторые другие факторы, существенно влияющие на водопотребление. (Диспетчеры знают об эффекте "Штирлица", проявившемся впервые во время премьерного показа фильма "Семнадцать мгновений весны", когда в часы демонстрации по ТВ водопотребление в городах падало почти до нуля, тогда как обычно на вечерние часы приходится пик водоразбора - вместо "помыться-постираться" люди не отрываясь, сидели у телевизоров. В результате кое-где имели место переполнения резервуаров с затоплением прилегающих территорий). Основой для решения задачи прогнозирования потребления воды является многолетний архив данных почасовых измерений, для накопления которых предусмотрен специальный автоматизированный компьютерный журнал. Данные в этот журнал могут заноситься как автоматически, с использованием средств телемеханики (если они есть и работают), так и в "ручном" режиме, на основе суточных рапортов, поступающих с насосных станций в виде бумажных, электронных или факсимильных документов. Ориентируясь на данные прогноза, можно эффективно планировать загрузку насосных станций второго подъема для обеспечения необходимых запасов в резервуарах чистой воды, поскольку текущие значения уровней воды в них вкупе с данными прогноза водопотребления позволяют сформировать обоснованное "задание" для программы оптимизации режимов работы насосных станций (об этом шла речь выше). Точность прогноза, конечно же, существенно зависит от величины периода, за который накоплены архивные данные, от вида прогноза и времени "упреждения", но в любом случае она достаточно высока. Так, на основе многолетнего архива данных МГП "Мосводоканал", в центральной диспетчерской службе которого эксплуатируется описываемая модель, достигнуты следующие показатели точности прогнозов: средняя абсолютная процентная ошибка составляет примерно 1,3% для месячных данных, менее 5% для данных суточного прогноза, и около 2,5% для почасового прогноза. Кроме собственно прогнозирования, наличие архива данных позволяет строить аналитические отчеты и графики любой сложности - как во временной развертке, так и корреляционные.

  1. Моделирование гидравлических режимов сети водоснабжения с учетом суточной неравномерности нагрузки. С некоторой степенью условности альтернативой задаче прогноза водопотребления на основе архивов реальных измерений может являться задача почасового моделирования потокораспределения в водопроводной сети. Это классическая задача гидравлического расчета, но с существенным дополнением. Если для обычного гидравлического расчета в качестве исходных данных по потребителям задается расчетная нагрузка в виде среднесуточного либо максимального значения водоразбора, то в рассматриваемой задаче для каждого потребителя задается и так называемый "суточный график водопотребления" (а точнее, один из нескольких существующих типов графиков суточной неравномерности). В этом случае может быть выполнен почасовой гидравлический расчет сети, в результате которого формируется график заполнения резервуаров. Следует отметить, что для целей оперативного управления использовать данный метод вряд ли целесообразно в силу возможных значительных отклонений реальных параметров водопотребления от расчетных величин. Однако как инструмент поверочного расчета при долгосрочном проектировании режимов и схем водоснабжения, проектировании новых подключений, анализе качественных и количественных характеристик гидравлических режимов в системе водоснабжения - такое моделирование представляется весьма полезным.

Все описанные выше математические модели и алгоритмы реализованы специалистами нашей компании в виде специализированной информационно-графической системы (ИГС) "AnWater" . Это весьма сложный программный комплекс, интегрирующий несколько подсистем разного функционального назначения и предназначенный для эксплуатации персоналом центральных и районных диспетчерских служб муниципальных предприятий водоснабжения. В различном функциональном составе ИГС "AnWater" внедрена в водоканалах нескольких крупных городов России и прошла многолетнюю проверку промышленной эксплуатацией.

В заключение - несколько слов в адрес двух самых крупных в стране водоканалов. Создание информационно-технологических систем такого класса как ИГС "AnWater" , аккумулирующих в себе массу наукоемких решений, сложных математических моделей, знаний и методов прикладной предметной области, и требующих кропотливой и тщательной выверки и отладки, - невозможно без заинтересованности и поддержки со стороны персонала предприятия-заказчика. Сотрудники и руководители служб МГП "Мосводоканал" и его филиалов (Северная водопроводная станция, Производственное управление регулирующих узлов), а впоследствии и ГУП "Водоканал Санкт-Петербурга" на протяжении нескольких лет терпеливо и внимательно вникали в разрабатываемый и внедряемый "с колес" программный продукт, засыпали нас замечаниями и пожеланиями, заставляя в итоге делать систему не так, как нам было проще с точки зрения разработчиков, а так, как правильно и удобно с точки зрения эксплуатации. Персонал Московского и Питерского водоканалов, с которым при разработке и внедрении нам пришлось работать в постоянном контакте, проявил максимум терпимости и доброжелательности, а высокая профессиональная квалификация сотрудников, безусловно, сыграла свою роль при формировании предметных требований к системе. Именно благодаря сотрудничеству с этими двумя предприятиями ИГС "AnWater" и сейчас продолжает совершенствоваться и "обрастать" новыми задачами, но уже и в своем нынешнем виде эта система стала полноценным высококачественным продуктом, которому по функциональному составу и характеристикам математических моделей аналога в мире на сегодняшний день практически не существует. Пользуясь случаем, со страниц журнала я хочу от имени ИВЦ "Поток" высказать признательность коллективам МГП "Мосводоканал", его филиалов (СВС, ПУРУ) и ГУП "Водоканал Санкт-Петербурга" за их вклад в развитие отечественных интеллектуальных технологий, пожелать им успехов и выразить надежду на дальнейшее сотрудничество, от которого в конечном итоге выигрывают все.

Оптимизация повысительного насосного оборудования в системах водоснабжения

О. А. Штейнмиллер, к.т.н., генеральный директор ЗАО «Промэнерго»

Проблемы при обеспечении напоров в водопроводных сетях российских городов, как правило, однородны. Состояние магистральных сетей привело к необходимости снижения давления, вследствие чего возникла задача компенсировать падение напора на уровне районных, квартальных и внутридомовых сетей. Развитие городов и увеличение высотности домов, особенно при уплотнительной застройке, требуют обеспечения потребных напоров для новых потребителей, в том числе за счет оснащения повысительными насосными установками (ПНУ) домов повышенной этажности (ДПЭ). Подбор насосов в составе повысительных насосных станций (ПНС) производился с учетом перспектив развития, параметры подачи и напора завышались. Распространен вывод насосов на потребные характеристики дросселированием задвижками, приводящий к перерасходу электроэнергии. Замена насосов вовремя не производится, большинство из них работает с низким КПД. Износ оборудования обострил необходимость реконструкции ПНС для повышения КПД и надежности работы.

Совокупность указанных факторов приводит к необходимости определе¬ния оптимальных параметров ПНС при имеющихся ограничениях входных напоров, в условиях неопределенности и неравномерности фактических расходов. При решении такой задачи встают вопросы сочетания последовательной работы групп насосов и параллельной работы насосов, объединенных в пределах группы, а также совмещения работы параллельно соединенных насосов с частотным регулированием привода (ЧРП) и, в конечном счете, подбора оборудования, обеспечивающего потребные параметры конкретной системы. Следует учитывать значимые изменения последних лет в подходах к подбору насосного оборудования - как в плане исключения избыточности, так и в техническом уровне доступного оборудования.

Особая актуальность указанных вопросов определяется возросшим значением решения проблем энергоэффективности, что получило подтверждение в Федеральном законе РФ от 23.11.2009 г. № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».

Вступление указанного закона в силу стало катализатором повсеместного увлечения стандартными решениями снижения энергопотребления, без оценки их эффективности и целесообразности в конкретном месте внедрения. Одним из таких решений для коммунальных предприятий стало оснащение ЧРП имеющегося насосного оборудования в системах подачи и распределения воды, зачастую морально и физически изношенного, обладающего избыточными характеристиками, эксплуатируемого без учета фактических режимов.

Анализ технико-экономических результатов любой планируемой модернизации (реконструкции) требует времени и квалификации персонала. К сожалению, руководители большинства муниципальных водоканалов испытывают дефицит и того и другого, когда в условиях постоянного крайнего недофинансирования приходится оперативно осваивать чудом доставшиеся средства, выделенные для технического «перевооружения».

Поэтому, осознавая, каких масштабов достигла вакханалия бездумного внедрения ЧРП на насосах повысительных систем водоснабжения, автор решил представить этот вопрос для более широкого обсуждения специалистами, занимающимися вопросами водоснабжения.

Основными параметрами насосов (нагнетателей), определяющими диапазон изменения режимов работы насосных станций (НС) и ПНУ, состав оборудования, конструктивные особенности и экономические показатели, являются напор, подача, мощность и коэффициент полезного действия (КПД). Для задач повышения напора в водоснабжении важна связь функциональных параметров нагнетателей (подача, напор) с мощностными:

где р - плотность жидкости, кг/м3; д - ускорение свободного падения, м/с2;

О - подача насоса, м3/с; Н - напор насоса, м; Р - давление насоса, Па; N1, N - полезная мощность и мощность насоса (поступающая к насосу через передачу от двигателя), Вт; Nb N2 - входная (потребляемая) и выходная (выдаваемая для передачи) мощности двигателя.

КПД насоса n h учитывает все виды потерь (гидравлических, объемных и механических), связанных с преобразованием насосом механической энергии двигателя в энергию движущейся жидкости. Для оценки насоса в сборе с двигателем рассматривается КПД агрегата na , определяющий целесообразность эксплуатации при изменении рабочих параметров (напора, подачи, мощности). Значение КПД и характер его изменения существенно определяются назначением насоса и конструктивными особенностями.

Конструктивное разнообразие насосов велико. Опираясь на принятую в России полную и логичную классификацию, основанную на различиях в принципе действия, в группе динамических насосов выделим лопастные насосы, используемые на сооружениях водоснабжения и канализации. Лопастные насосы обеспечивают плавную и непрерывную подачу при высоких КПД, имеют достаточную надежность и долговечность. Работа лопастных насосов основана на силовом взаимодействии лопастей рабочего колеса с обтекающим потоком перекачиваемой жидкости, различия механизма взаимодействия в силу конструкции приводят к отличию эксплуатационных показателей лопастных насосов, которые разделяются по направлении потока на центробежные (радиальные), диагональные и осевые (аксиальные).

С учетом характера рассматриваемых задач наибольший интерес представляют центробежные насосы, в которых при вращении рабочего колеса на каждую часть жидкости массой т, находящейся в межлопастном канале на расстоянии г от оси вала, будет действовать центробежная сила Fu:

где w - угловая скорость вала, рад./с.

Методы регулирования рабочих параметров насоса

таблица 1

чем больше частота вращения п и диаметр рабочего колеса D.

Основные параметры насосов - подача Q, напор Я, мощность N, КПД I] и частота вращения п - находятся в определенной зависимости, которая отражается характеристическими кривыми. Характеристика (энергетическая характеристика) насоса - графически выраженная зависимость основных энергетических показателей от подачи (при постоянной частоте вращения рабочего колеса, вязкости и плотности среды на входе в насос), см. рис. 1.

Основной характеристической кривой насоса (рабочей характеристикой, рабочей кривой) является график зависимости развиваемого насосом напора от подачи H=f(Q) при постоянной частоте вращения п = const. Максимальному значению КПД qmBX соответствуют подача Qp и напор Нр в оптимальной режимной точке Рхарактеристики Q-H (рис. 1-1).

Если основная характеристика имеет восходящую ветвь (рис. 1-2) - интервал от Q = 0 до 2б, то она называется восходящей, а интервал - областью неустойчивой работы с внезапными изменениями подачи, сопровождаемыми сильным шумом и гидравлическими ударами. Характеристики, не имеющие возрастающей ветви, называются стабильными (рис. 1-1), режим работы - устойчивый во всех точках кривой. «Стабильная кривая необходима, когда требуется использовать два или несколько насосов одновременно» , что из экономических соображений весьма целесообразно в насосных приложениях. Форма основной характеристики зависит от коэффициента быстроходности насоса ns - чем он больше, тем круче кривая.

При стабильной пологой характеристике напор насоса при изменении подачи изменяется незначительно. Насосы с пологими характеристиками необходимы в системах, где при постоянном напоре требуется регулирование подачи в широких пределах, что соответствует задаче повышения напора в оконечных участках водопроводной сети

На квартальных ПНС, а также в составе ПНУ местных подкачек. Для рабочей части характеристики Q-H распространена зависимость:

где а, b - подбираемые постоянные коэффициенты (a>>0, b>>0) для данного насоса в пределах характеристики Q-H, имеющей квадратичный вид.

В работе применяются последовательное и параллельное подключение насосов. При последовательной установке суммарный напор (давление) больше, чем развивает каждый из насосов. Параллельная установка обеспечивает расход больше, чем каждый насос отдельно. Общая характеристика и основные соотношения для каждого способа приведены на рис. 2.

При работе насоса с характеристикой Q-H на трубопроводную систему (прилегающие водоводы и дальнейшая сеть) требуется напор для преодоления гидравлического сопротивления системы - суммы сопротивлений отдельных элементов, которые оказывают сопротивление потоку, что сказывается в итоге на потерях напора. В общем можно утверждать:

где ∆Н - потери напора на одном элементе (участке) системы, м; Q - расход жидкости, проходящий через этот элемент (участок), м3/с; k - коэффициент потерь напора, зависящий от вида элемента (участка) системы, C2/М5

Характеристика системы - зависимость гидравлического сопротивления от расхода. Совместная работа насоса и сети характеризуется точкой материального и энергетического равновесия (точкой пересечения характеристик сисистемы и насоса) - рабочей (режимной) точкой с координатами (Q,i/i), соответствующими текущей подаче и напору при работе насоса на систему (рис. 3).

Различают два типа систем: закрытые и открытые. В закрытых системах (отопления, кондиционирования и т.п.) объем жидкости постоянен, насос необходим для преодоления гидравлического сопротивления составляющих (трубопроводов, устройств) при технологически необходимом перемещении носителя в системе.

Характеристика системы - парабола с вершиной (Q,Н) = (0, 0).

В водоснабжении интерес представляют открытые системы , транспортирующие жидкость из одной точки в другую, в которых насос обеспечивает потребный напор в точках разбора, преодолевая потери на трение в системе. Из характеристики системы ясно - чем меньше расход, тем ниже потери на трение АНТ и, соответственно, потребляемая мощность.

Различают два типа открытых систем: с насосом ниже точки разбора и выше точки разбора. Рассмотрим открытую систему 1-го типа (рис. 3). Для подачи из резервуара № 1 на нулевой отметке (нижний бассейн) в верхний резервуар № 2 (верхний бассейн) насос должен обеспечить геометрическую высоту подъема Н, и компенсировать потери на трение АНТ, зависящие от расхода.

Характеристика системы

Парабола с координатами (0; ∆Н,).

В открытой системе 2-го типа (рис. 4)

вода под влиянием перепада высот (H1) доставляется потребителю без насоса. Разница высот текущего уровня жидкости в резервуаре и точки разбора (H1 ) обеспечивает некий расход Qr. Обусловленный перепадом высот напор недостаточен для обеспечения потребного расхода (Q). Поэтому насос должен добавить напор Н1 чтобы полностью преодолеть потери на трение ∆Н1 Характеристика системы - парабола с началом (0; -H1 ). Расход зависит от уровня в резервуаре - при его понижении высота Н, уменьшается, характеристика системы сдвигается наверх и расход снижается. Система отражает задачу недостатка входного давления в сети (подпор, эквивалентный Яг) для обеспечения подачи необходимого количества воды всем потребителям с требуемым напором.

потребности системы меняются во времени (меняется характеристика системы), встает вопрос о регулировании параметров насоса с целью соответствия текущим требованиям. Обзор методов изменения параметров насоса приведен в табл. 1.

При дроссельном регулировании и регулировании байпасом может происходить как снижение, так и увеличение потребляемой мощности (зависит от характеристики мощности центробежного насоса и положения рабочих точек до регулирующего воздействия и после него). В обоих случаях итоговый КПД значительно снижается, относительная потребляемая мощность на единицу подачи в систему увеличивается, происходит непроизводительная потеря энергии. Метод коррекции диаметра рабочего колеса обладает рядом преимуществ для систем со стабильной характеристикой, при этом срезка (или замена) колеса позволяет вывести насос на оптимальный режим работы без существенных начальных затрат, а КПД уменьшается незначительно . Однако метод неприменим оперативно, когда условия потребления и, соответственно, подачи непрерывно и существенно меняются в течение работы. Например, когда «насосная водопроводная установка подает воду непосредственно в сеть (насосные станции 2-го, 3-го подъемов, станции подкачки и т.п.)» и когда целесообразно частотное регулирование электропривода с помощью преобразователя частоты тока (ПЧТ), обеспечивающее изменение частоты вращения рабочего колеса (скорости насоса).

Основываясь на законе пропорциональности (формулы пересчета), можно по одной характеристике Q-H построить ряд характеристик насоса в диапазоне изменения частоты вращения (рис. 5-1). Пересчет координат (QA1 , HA ) некой точки А характеристики Q-H, имеющей место при номинальной частоте вращения n , для частот n1

n2.... ni , приведет к точкам А1 , А2.... Аi принадлежащим соответствующим характеристикам Q-Н1 Q-H2...., Q-Hi

(рис. 5-1). А1 , А2, Аi -, образуют так называемую параболу подобных режимов с вершиной в начале координат, описываемую уравнением:

Парабола подобных режимов - геометрическое место точек, определяющих при различных частотах вращения (скоростях) режимы работы насоса, подобные режиму в точке А. Пересчет точки В характеристики Q-H при частоте вращения n на частоты n1 n2 ni , даст точки В1, В2, Вi определяющие соответствующую параболу подобных режимов (0B1 B) (рис. 5-1).

На основе исходного положения (при выводе так называемых формул пересчета) о равенстве натурного и модельного КПД предполагается, что каждая из парабол подобных режимов является линией постоянного КПД. Это положение - основа использования в насосных системах ЧРП, представляемого многими едва ли не единственным способом оптимизации режимов работы насосных станций. В действительности при ЧРП насос не сохраняет постоянства КПД даже на параболах подобных режимов, так как с увеличением частоты вращения п возрастают скорости потока и пропорционально квадратам скоростей гидравлические потери в проточной части насоса. С другой стороны, механические потери сказываются сильнее при малых значениях скорости, когда мощность насоса мала. КПД достигает максимума при расчетном значении частоты вращения п0. При других n , меньших или больших n0 , КПД насоса будет уменьшаться по мере увеличения отклонения n от n0 . С учетом характера изменения КПД при изменении скорости, отмечая на характеристиках Q-Н1, Q-H2, Q-Нi точки с равными значениями КПД и соединяя их кривыми, получим так называемую универсальную характеристику (рис. 5-2), определяющую работу насоса при переменной частоте вращеия, КПД и мощности насоса для любой режимной точки.

Кроме снижения КПД насоса следует учесть снижение КПД двигателя вследствие работы ПЧТ , имеющее две составляющие: во-первых, внутренние потери ПЧТ и, вовторых, потери на гармониках в регулируемом электродвигателе (обусловлены несовершенством синусоидальной волны тока при ЧРП). КПД современного ПЧТ при номинальной частоте переменного тока составляет 95-98% , при функциональном снижении частоты выходного тока КПД ПЧТ снижается (рис. 5-3).

Потери в двигателях на гармониках, производимых при ЧРП (варьируемых от 5 до 10%), приводят к нагреву двигателя и соответствующему ухудшению характеристик, в результате КПД двигателя падает еще на 0,5-1% .

Обобщенная картина «конструктивных» потерь КПД насосного агрегата при ЧРП, приводящих к росту удельного энергопотребления (на примере насоса ТРЕ 40-300/2-S), представлена на рис. 6 - снижение скорости до 60% от номинальной уменьшает ла на 11% относительно оптимального (при рабочих точках на параболе подобных режимов с максимальным КПД). При этом потребление электроэнергии снизилось с 3,16 до 0.73 кВт, т.е. на 77% (обозначение P1, [(«Грундфос») соответствует N1, в (1)]. Эффективность при снижении скорости обеспечивается уменьшением полезной и, соответственно, потребляемой мощности.

Вывод. Снижение КПД агрегата в связи с «конструктивными» потерями приводит к росту удельного энергопотребления даже при работе вблизи точек с максимальным КПД.

В еще большей степени относительные энергозатраты и эффективность регулирования скорости зависят от условий эксплуатации (типа системы и параметров ее характеристики, положения рабочих точек на насосных кривых относительно максимума КПД), а также от критерия и условий регулирования. В закрытых системах характеристика системы может быть близка к параболе подобных режимов, проходящей через точки максимальных КПД для различных частот вращения, т.к. обе кривые однозначно имеют вершину в начале координат. В открытых системах водоснабжения характеристика системы имеет ряд особенностей, приводящих к существенному различию ее вариантов.

Во-первых, вершина характеристики, как правило, не совпадает с началом координат из-за различной статической составляющей напора (рис. 7-1). Статический напор чаще положителен (рис. 7-1, кривая 1) и необходим для подъема воды на геометрическую высоту в системе 1-го типа (рис. 3), но может быть и отрицательным (рис. 7-1, кривая 3) - когда подпор на входе в систему 2-го типа превышает потребный геометрический напор (рис. 4). Хотя нулевой статический напор (рис. 7-1, кривая 2) также возможен (например, при равенстве подпора потребному геометрическому напору).

Во-вторых, характеристики большинства систем водоснабжения постоянно изменяются во времени . Это относится к перемещениям вершины характеристики системы по оси напора, что объясняется изменениями величины подпора или величины потребного геометрического напора. Для ряда систем водоснабжения в силу постоянного изменения количества и расположения фактических точек потребления в пространстве сети происходит смена положения диктующей точки в поле , означающая новое состояние системы, которая описывается новой характеристикой с другой кривизной параболы.

В итоге очевидно, что в , работа которой обеспечивается одним насосом, как правило, затруднительно регулировать скорость насоса в однозначном соответствии с текущим водопотреблением (т.е. четко по актуальной характеристике системы), сохраняя положение рабочих точек насоса (при таком изменении скорости) на фиксированной параболе подобных режимов, проходящей через точки с максимальным КПД.

Особенно существенно снижение КПД при ЧРП в соответствии с характеристикой системы проявляется в случае значительной статической напорной составляющей (рис. 7-1, кривая 1). Так как характеристика системы не совпадает с параболой подобных режимов, то при снижении скорости (за счет снижения частоты тока с 50 до 35 Гц) точка пересечения характеристик системы и насоса ощутимо сместится влево. Соответствующее смещение на кривых КПД приведет в зону меньших значений (рис. 7-2, «малиновые» точки).

Таким образом, потенциалы энергосбережения при ЧРП в системах водоснабжения существенно разнятся. Показательна оценка эффективности ЧРП по удельной энергии на перекачку

1 м3 (рис. 7-3). В сравнении с дискретным управлением типа D регулирование скорости имеет смысл в системе типа С - с относительно малым геометрическим напором и значительной динамической составляющей (потерями на трение). В системе типа В геометрическая и динамическая составляющие значительны, регулирование скорости эффективно на определенном интервале подач. В системе типа А с большой высотой подъема и малой динамической составляющей (менее 30% от потребного напора) применение ЧРП сточки зрения энергетических затрат нецелесообразно. В основном задача повышения напора на конечных участках водопроводной сети решается в системах смешанного типа (типа В), что требует предметного обоснования применения ЧРП для повышения энергоэффективности.

Регулирование скорости в принципе позволяет расширить диапазон рабочих параметров насоса вверх от номинальной характеристики Q-H. Поэтому некоторые авторы предлагают так подбирать оснащенный ПЧТ насос, чтобы обеспечить максимальное время его работы на номинальной характеристике (с максимумом КПД). Соответственно, с помощью ЧРП при снижении подачи скорость насоса снижается относительно номинальной, а при увеличении - возрастает (при частоте тока выше номинала). Однако кроме необходимости учитывать мощность электродвигателя отметим, что производители насосов обходят молчанием вопрос практического применения длительной работы насосных двигателей с частотой тока, существенно превышающей номинальную.

Весьма привлекательна идея управления по характеристике системы, снижающего избыточные напоры и соответствующий перерасход энергии. Но определять потребный напор по текущему значению меняющегося расхода затруднительно в силу многообразия возможных положений диктующей точки в сиюсекундном состоянии системы (при изменении количества и расположения мест потребления в сети, а также расхода в них) и вершины характеристики системы на оси напора (рис. 8-1). До массового применения средств КИПиА и передачи данных возможна лишь «аппроксимация» управления по характеристике на основе частных для сети предположений, задающих набор диктующих точек или ограничивающих сверху характеристику системы в зависимости от расхода . Пример такого подхода - 2-позиционное регулирование (день/ночь) выходного давления в ПНС и ПНУ.

Принимая во внимание значительную изменчивость по расположению вершины характеристики системы и по текущему положению в поле диктующей точки, а также ее неопределенности на схеме сети, приходится сделать вывод, что на сегодняшний день в большинстве пространственных систем водоснабжения применяется управление по критерию постоянного давления (рис. 8-2, 8-3). Важно, что при снижении расхода Q частично сохраняются избыточные напоры, которые тем больше, чем левее рабочая точка, а снижение КПД при уменьшении частоты вращения рабочего колеса, как правило, усилится (в случае соответствия максимума КПД точке пересечения характеристики насоса при номинальной частоте и линии установленного постоянного давления).

Признавая возможности сокращения потребляемой и полезной мощности при регулировании скорости с целью лучшего соответствия потребностям сестемы, необходимо определять реальную эффективность ЧРП для конкретной системы, сопоставляя или сочетая этот способ с другими действенными методами снижения энергозатрат, и в первую очередь с соответствующим уменьшением номиналов подачи и/или напора в расчете на один насос при увеличении их количества.

Показателен пример схемы параллельно и последовательно соединенных насосов (рис. 9), обеспечивающей значительное количество рабочих точек в широком диапазоне напоров и подач .

При повышении напора на участках сетей водоснабжения, приближенных к потребителям, встают вопросы сочетания последовательной работы групп насосов и параллельной работы насосов, объединенных в пределах одной группы. Применение ЧРП поставило также вопросы оптимального совмещения работы ряда параллельно соединенных насосов с частотным регулированием

При совмещении обеспечивается высокая комфортность для потребителей за счет плавного пуска/ останова и стабильного напора, а также снижение установочной мощности - зачастую количество резервных насосов не меняется, а номинальное значение потребляемой мощности в расчете на один насос снижается. Также снижаются мощность ПЧТ и его цена.

По сути рассмотрения ясно, что совмещение (рис. 10-1) позволяет перекрыть необходимую часть рабочей зоны поля . Если подбор оптимален, то на большей части рабочей зоны, и в первую очередь на линии контролируемого постоянного давления (напора), обеспечивается максимальный КПД большинства насосов и насосной установки в целом. Предметом обсуждения совместной работы параллельно соединенных насосов в сочетании с ЧРП зачастую становится вопрос о целесообразности оснащения каждого насоса своим ПЧТ.

Однозначный ответ на этот вопрос будет недостаточно точен. Конечно, правы утверждающие , что оснащение каждого насоса ПЧТ увеличивает возможное пространство расположения рабочих точек для установки. Могут быть правы и считающие , что при работе насоса в широком диапазоне подач рабочая точка не находится в оптимуме КПД, а при работе 2 таких насосов с пониженной скоростью общий КПД будет выше (рис. 10-2). Этой точки зрения придерживаются поставщики насосов, оснащенных встроенными ПЧТ.

По нашему мнению, ответ на этот вопрос зависит от конкретного вида характеристик системы, насосов и установки, а также от расположения рабочих точек. При управлении по постоянному давлению увеличение пространства расположения рабочих точек не требуется, и поэтому установка, оснащенная одним ПЧТ в щите управления, будет работать аналогично установке, каждый насос которой оснащен ПЧТ. Для обеспечения более высокой технологической надежности возможно установить в шкаф второй ПЧТ - резервный.

При правильном подборе (максимум КПД соответствует точке пересечения основной характеристики насоса и линии постоянного давления) КПД одного насоса, работающего на номинальной частоте (в зоне максимума КПД), будет выше общего КПД двух таких же насосов, обеспечивающих ту же рабочую точку при работе каждого из них с пониженной скоростью (рис. 10-3). Если рабочая точка лежит за пределами характеристики одного (двух и т.д.) насоса, то тогда один (два и т.д.) насос будет работать в «сетевом» режиме, имея рабочую точку на пересечении характеристики насоса и линии постоянного давления (с максимальным КПД). А один насос будет работать с ПЧТ (имея при этом более низкий КПД), и его скорость будет определяться текущим требованием системы по подаче, обеспечивая соответствующую локализацию рабочей точки всей установки на линии постоянного давления.

Целесообразно так подбирать насос, чтобы линия постоянного давления, определяющая и рабочую точку с максимальным КПД, пересекалась с напорной осью как можно выше относительно линий характеристик насоса, определенных для пониженных скоростей. Это корреспондируется с отмеченным выше положением о применении при решении задач повышения напора в оконечных участках сети насосов со стабильными и пологими характеристиками (по возможности с более низким коэффициентом быстроходности ns).

При условии «один насос рабочий...» весь диапазон подачи обеспечивается одним насосом (рабочим в данный момент) с регулируемой скоростью, поэтому большую часть времени насос работает с подачей меньше номинальной и, соответственно, при более низком КПД (рис. 6, 7). В настоящее время присутствует строгое намерение заказчика ограничиться двумя насосами в составе установки (один насос рабочий, один - резервный) с целью снижения первоначальных затрат.

Эксплуатационные затраты влияют на выбор в меньшей степени. При этом нередко заказчик с целью «перестраховки» настаивает на применении насоса, номинальное значение подачи которого превышает расчетный и/или замеренный расход. В таом случае выбранный вариант будет не соответствовать реальным режимам водопотребления на значительном интервале времени суток, что приведет к перерасходу электроэнергии (из-за более низкого КПД в наиболее «частом» и широком диапазоне подачи), снизит надежность и долговечность работы насосов (из-за частого выхода на минимум 2„ин допустимого диапазона подачи, для большинства насосов - 10% от номинального значения), уменьшит комфортность водоснабжения (из-за периодичности функции останова и старта). В результате признавая «внешнюю» обоснованность аргументов заказчика, приходится принять как факт избыточность большинства вновь устанавливаемых повысительных насосов на внутренних , что приводит к очень низкому КПД насосных агрегатов. Использование ЧРП при этом дает лишь часть возможной экономии в эксплуатации.

Тенденция применения двух насосных ПНУ (один - рабочий, один - резервный) широко проявляется в новом жилищном строительстве, т.к. ни проектные, ни строительно-монтажные организации практически не заинтересованы в эксплуатационной эффективности инженерного оборудования возводимого жилья, главным критерием оптимизации является закупочная цена при обеспечении уровня контрольного параметра (например, подачи и напора в единственной диктующей точке). Большинство новых жилых домов, с учетом возросшей этажности, оснащается ПНУ. Возглавляемая автором компания («Промэнерго») осуществляет поставки ПНУ как производства « », так и своего производства на базе насосов «Грундфос» (известных под наименованием МАНС). Статистика поставок «Промэнерго» в этом сегменте за 4 года (табл. 2) позволяет отметить абсолютное преобладание двух насосных ПНУ, особенно среди установок с ЧРП, которые в основном будут использованы в системах хозяйственнопитьевого водоснабжения, и в первую очередь жилых зданий.

По нашему мнению, оптимизация состава ПНУ, как в части затрат на электроэнергию, так и в части надежности работы, ставит вопрос об увеличении количества рабочих насосов (при снижении подачи каждого из них). Эффективность и надежность могут быть обеспечены только сочетанием ступенчатого и плавного (частотного) регулирования.

Анализ практики повысительных насосных систем с учетом возможностей современных насосов и методов регулирования, принимая во внимание ограниченность ресурсов, позволил предложить в качестве методического подхода оптимизации ПНС (ПНУ) концепцию периферийного моделирования подачи воды в контексте сокращения энергоемкости и стоимости жизненного цикла насосного оборудования . Для рационального выбора параметров насосных станций с учетом структурной взаимосвязи и полирежим- ного характера функционирования периферийных элементов системы подачи воды разработаны математические модели. Модельное решение позволяет обосновать подход к выбору числа нагнетателей в составе ПНС, в основе чего лежит исследование функции стоимости жизненного цикла в зависимости от числа нагнетателей в составе ПНС. При исследовании по модели ряда действующих систем установлено, что в большинстве случаев оптимальное число рабочих насосов в составе ПНС составляет 3-5 единиц (при условии применения ЧРП).

Литература

1. Березин С.Е. Насосные станции с погружными насосами: расчет и конструирование/С.Е. Березин. - М.: Стройиздат, 2008.

160 с.

2. Карелин В.Я. Насосы и насосные станции/В.Я. Карелин, А.В. Минаев.

М.: Стройиз-дат, 1986. - 320 с.

3. Карттунен Э. Водоснабжение II: пер. с финского/Э. Карттунен; Ассоциация инженеров-строителей Финляндии RIL г.у. - СПб.: Новый журнал, 2005 - 688 с.

4. Кинебас А.К. Оптимизация подачи воды в зоне влияния Урицкой насосной станции Санкт-Петербурга/ А.К. Кинебас, М.Н. Ипатко, Ю.В. Рук- син и др.//ВСТ. - 2009. - № 10, ч. 2. - с. 12-16.

5. Красильников А. Автоматизированные насосные установки с каскадно-частотным управлением в системах водоснабжения [Электронный ресурс]/А. Красильникова/Строительная инженерия. - Электрон, дан. - [М.], 2006. - № 2. - Режим доступа: http://www.archive- online.ru/read/stroing/347.

6. Лезнов Б.С. Энергосбережения и регулируемый привод в насосных и воздуходувных установках/ Б.С. Лезнов. - М.: Энергоатом- издат, 2006. - 360 с.

7. Николаев В. Потенциал энергосбережения при переменной нагрузке лопастных нагнетателей/В. Нико- лаев//Сантехника. - 2007. - № 6. - с. 68-73; 2008. - № 1. - с. 72-79.

8. Промышленное насосное оборудование. - М.: ООО «Грундфос», 2006. - 176 с.

9. Штейнмиллер О.А. Оптимизация насосных станций систем водоснабжения на уровне районных, квартальных и внутридомовых сетей: автореф. дис. ... канд. техн. наук/ О.А. Штейнмиллер. - СПб.: ГАСУ, 2010. - 22 с.

БЫСТРАЯ СВЯЗЬ

1. Аналитический обзор основ насосной теории, нагнетательного
оборудовании и технологии решения задач создания и повышения
напора в системах подачи и распределения воды (СПРВ)
10

1.1. Насосы. Классификация, основные параметры и понятия.

Технический уровень современного насосного оборудования 10

    Основные параметры и классификация насосов 10

    Насосное оборудование для повышения напора в водоснабжении.... 12

    Обзор новаций и усовершенствований насосов с точки зрения практики их применения 16

    1.2. Технология применения нагнетателей в СПРВ 23

    1. Насосные станции систем водоснабжения. Классификация 23

      Общие схемы и способы регулирования работы насосов при повышении напора 25

      Оптимизация работы нагнетателей: регулирования скорости и совместная работа 30

      Проблемы обеспечения напоров в наружных и внутренних водопроводных сетях 37

      Выводы но главе 40

    2. Обеспечение потребного напора в наружных и внутренних
    водопроводных сетях. Повысительиые компоненты СПРВ на уровне
    районных, квартальных и внутренних сетей
    41

    2.1. Общие направления развития в практике применения насосного

    оборудования для повышения напора в водопроводных сетях 41

    л 2.2". Задачи обеспечения потребных напоров в водопроводных сет

      Краткая характеристика СПРВ (на примере СПб)

      Опыт решения задач повышения напора на уровне районных и квартальных сетей 48

    2.2.3. Особенности задач повышения напора во внутренних сетях 55

    2.3. Постановка задачи оптимизации повысительных компонентов

    СПРВ на уровне районных, квартальных и внутренних сетей 69

    2.4. Выводы по главе „.._. 76

    3. Математическая модель оптимизации насосного оборудования

    на периферийном уровне СПРВ 78

    3.1. Статическая оптимизация параметров насосного оборудования

    на уровне районных, квартальных и внутренних сетей 78

      Общее описание структуры районной водопроводной сети при решении задач оптимального синтеза.". 78

      Минимизация энергетических затрат на один режим водопотребления „ 83

    3.2. Оптимизация параметров насосного оборудования на периферий
    ном уровне СПРВ при изменении режима водопотребления 88

      Полирежимиое моделирование в задаче минимизации энергетических затрат (общие подходы) 88

      Минимизация энергетических затрат при возможности регулирования скорости (частоты вращения колеса) нагнетателя 89

    2.3. Минимизация энергетических затрат в случае

    каскадно-частотного регулирования (управления) 92

    Имитационная модель для оптимизации параметров насосного
    оборудования на периферийном уровне СПРВ 95

    3.4. Выводы по главе

    4". Численные методы решения задач оптимизации параметров
    насосного оборудования
    101

    4.1. Исходные данные для решения задач оптимального синтеза, 101

      Изучение режима водопотребления методами анализа временных рядов _ 101

      Определение регулярностей временного ряда водопотребления 102

      Частотное распределение расходов и коэффициенты

    Неравномерности водопотребления 106

    4.2. Аналитическое представление рабочих характеристик насосного
    оборудования, 109

      Моделирование рабочих характеристик отдельных нагнетателей тят 109

      Идентификация рабочих характеристик нагнетателей в составе насосных станций 110

    4.3. Поиск оптимума целевой функции 113

      Оптимальный поиск с использованием градиентных методов 113

      Модифицированный план Холлаида. 116

    4.3.3. Реализация оптимизационного алгоритма на ЭВМ 119

    4.4. Выводы по главе 124

    5. Сравнительная эффективность повысительных компонентов

    СПРВ на основе оценки стоимости жизненного цикла

    (с применением МИК для измерения параметров) 125

    5.1. Методология оценки сравнительной эффективности

    повысительных компонентов на периферийных участках СПРВ 125

    5.1.1. Стоимость жизненного цикла насосного оборудования., 125

      Критерий минимизации совокупных дисконтированных затрат для оценки эффективности повысительных компонентов СПРВ 129

      Целевая функция экспресс-модели для оптимизации параметров насосного оборудования на периферийном уровне C1IPB 133

    5.2. Оптимизация повысительных компонентов на периферийных
    участках СПРВ при реконструкции и модернизации 135

      Система контроля подачи воды с использованием мобильного измерительного комплекса МИК 136

      Экспертная оценка результатов измерения параметров насосного оборудования ПНС с использованием МИК 142

      Имитационная модель стоимости жизненного цикла насосного оборудования ПНС на основе данных параметрического аудита 147

    5.3. Организационные вопросы реализации оптимизационных

    решений (заключительные положения) 152

    5.4. Выводы по главе 1 54

    Общие выводы.„ 155

    Список ли гературы 157

    Приложение 1. Некоторые понятия, функциональные зависимости и
    характеристики, существенные при выборе насосов 166

    Приложение 2. Описание программы для исследования

    оптимизационных моделей СПРВ микрорайона 174

    Приложение 3. Решение задач оптимизации и построение

    имитационных моделей LCCD НС с помощью табличного процессора 182

    Введение к работе

    Система подачи и распределения воды (СПРВ) является главным ответственным комплексом сооружений водоснабжения, обеспечивающим транспортировку воды на территорию снабжаемых объектов, распределение по территории и доставку к местам отбора потребителями. Нагнетательные (повыси-тельные) насосные станции (НС, ПНС), как один из основных структурных элементов СПРВ, во многом задают эксплуатационные возможности и технический уровень системы водоснабжения в целом, а также существенно определяют экономические показатели ее работы.

    Значимый вклад в разработку тематики висели отечественные ученые: Н.Н.Абрамов, М.М.Андрияшев, А.Г.Евдокимов, Ю.А.Ильин, С.Н.Карамбиров, В.Я.Карелин, А.М.Курганов, А.П.Меренков, Л.Ф.Мошнин, Е.А.Прегер, С.В.Сумароков, А.Д.Тевяшев, В.Я.Хасилев, П.Д.Хорунжий, Ф.АЛИевслев и др.

    Проблемы при обеспечении напоров в водопроводных сетях, стоящие перед российскими коммунальными предприятиями, как правило, однородны. Состояние магистральных сетей привело к необходимости снижения давления, вследствие чего возникла задача компенсировать соответствующее падение напора на уровне районных и квартальных сетей. Подбор насосов в составе ПНС зачастую производился с учетом перспектив развития, параметры производительности и напора завышались. Распространенным стал вывод насосов на потребные характеристики дросселированием с помощью задвижек, приводящий к перерасходу электроэнергии. Замена насосов вовремя не производится, большинство из них работает с низким КПД. Износ оборудования обострил необходимость реконструкции ПНС для повышения КПД и надежности работы.

    С другой стороны, развитие городов и увеличение высотности домов, особенно при уплотнительной застройке, требуют обеспечения потребных напоров для новых потребителей, в том числе за счет оснащения нагнетателями домов повышенной этажности (ДПЭ). Создание напора, необходимого для раз-їичньіх потребителей, в оконечных участках водопроводной сети, может яв-ться одним из наиболее реальных путей повышения эффективности СПРВ.

    Совокупность указанных факторов является основанием постановки задачи определения оптимальных параметров ПЫС при имеющихся ограничениях входных напоров, в условиях неопределенности и неравномерности фактических расходов. При решении задачи встают вопросы сочетания последовательной работы групп насосов и параллельной работы насосов, объединенных в пределах одной группы, а также оптимального совмещения работы параллельно соединенных насосов с частотным регулированием привода (ЧРП) и, в конечном счете, подбора оборудования, обеспечивающего потребные параметры конкретной системы водоснабжения. Следует учитывать значимые изменения последних лет в подходах к подбору насосного оборудования - как в плане исключения избыточности, так и в техническом уровне доступного оборудования.

    Актуальность рассматриваемых в диссертации вопросов определяется возросшим значением, которое в современных условиях отечественные хозяйствующие субъекты и общество в целом придают проблеме эиергоэффективно-сти. Насущная необходимость решения этой проблемы закреплена в Федеральном Законе Российской Федерации от 23.11.2009 г. № 261-ФЗ "Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации".

    Эксплуатационные расходы СПРВ составляют определяющую часть затрат на водоснабжение, которая продолжает увеличиваться в связи с ростом тарифов на электроэнергию. С целью снижения энергоемкости большое значение придается оптимизации СПРВ. По авторитетным оценкам от 30% до 50 % энергозатрат насосных систем может быть сокращено за счет изменения насосного оборудования и способов управления.

    Поэтому представляется актуальным совершенствование методологических подходов, разработка моделей и комплексного обеспечения принятия решений, позволяющих оптимизировать параметры нагнетательного оборудования периферийных участков сети, в том числе при подготовке проектов. Распределение потребного напора между насосными узлами, а также определение в пределах узлов, оптимального числа и типа насосных агрегатов с учетом рас-

    8 четной подачи, обеспечат анализ вариантов периферийной сети. Полученные результаты могут быть интегрированы в задачу оптимизации СПРВ в целом.

    Цель работы - исследование и разработка оптимальных решений при выборе повысительного насосного оборудования периферийных участков СПРВ в процессе подготовки реконструкции и строительства, включая методическое, математическое и техническое (диагностическое) обеспечение.

    Для достижения цели в работе решались следующие задачи:

    анализ практики в сфере повысительных насосных систем с учетом возможностей современных насосов и методов регулирования, сочетания последовательной и параллельной работы с ЧРП;

    определение методического подхода (концепции) оптимизации повысительного насосного оборудования СПРВ в условиях ограниченности ресурсов;

    разработка математических моделей, формализующих задачу выбора насосного оборудования периферийных участков водопроводной сети;

    анализ и разработка алгоритмов численных методов для исследования предложенных в диссертации математических моделей;

    разработка и практическая реализация механизма сбора исходных данных для решения задач реконструкции и проектирования новых ПНС;

    реализация имитационной модели формирования стоимости жизненного цикла по рассматриваемому варианту оборудования ПНС.

    Научная новизна. Представлена концепция периферийного моделирования подачи воды в контексте сокращения энергоемкости СПРВ и снижения стоимости жизненного цикла "периферийного" насосного оборудования.

    Разработаны математические модели для рационального выбора параметров насосных станций с учетом структурной взаимосвязи и полирежимного характера функционирования периферийных элементов СПРВ.

    Теоретически обоснован подход к выбору числа нагнетателей в составе ПНС (насосных установок); проведено исследование функции стоимости жизненного цикла ПНС в зависимости от числа нагнетателей.

    Разработаны специальные алгоритмы поиска экстремумов функций многих переменных, основанные на градиентных и случайных методах, для.исследования оптимальных конфигураций НС на периферийных участках.

    Создан, мобильный измерительный комплекс (МИК) для диагностики действующих повысительпых насосных систем, запатентованный в полезной модели № 81817 "Система контроля подачи воды".

    Определена методика выбора оптимального варианта насосного оборудования ПНС на базе имитационного моделирования стоимости жизненного цикла.

    Практическая значимость и реализация результатов работы. Даны рекомендации по выбору типа насосов для повысительных установок и Ш 1С на основе уточненной классификации современного насосного оборудования для повышения напора в системах водоснабжения с учетом таксонометричсского деления, эксплуатационных, конструктивных и технологических признаков.

    Математические модели ПНС периферийных участков СПРВ позволяют снизить стоимость жизненного цикла за счет выявления "резервов", в первую очередь в части энергоемкости. Предложены численные алгоритмы, позволяющие доводить до конкретных значений решение оптимизационных задач.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

На современном этапе развития нефтегазодобывающей промышленности большое значение имеет развитие автоматического управления производством, замена физически и мораль устаревших средств автоматизации и систем управления техническими процессами и объектами нефтегазодобычи. Введение новых систем автоматического контроля и управления приводит к повышению надежности и точности отслеживания технологического процесса.

Автоматизация производственных процессов является высшей формой развития техники добычи нефти и газа, создание высокопроизводительного оборудования, повышения культуры производства, основание новых нефтяных и газовых районов, рост добычи нефти и газа стали возможны благодаря развитию и внедрению автоматизации и совершенствованию управления.

Системный подход при решении вопросов автоматизации технологических процессов, создание и внедрение автоматизированных систем управления позволили осуществить переход к комплексной автоматизации всех основных и вспомогательных технологических процессов бурения, добычи, обессоливания и транспортировки нефти и газа.

Современные нефтедобывающие и газодобывающие предприятия представляют собой сложные комплексы технологических объектов, рассредоточенных на больших площадях. Технологические объекты связаны между собой. Это повышает требование к надежности и совершенству средств автоматизации. Обеспечение надежности и эффективности функционирования системы газоснабжения, оптимизация процессов нефтедобычи, транспорта, улучшение технико-экономических показателей развития нефтедобывающей отрасли требует решения важнейших задач перспективного планирования и оперативно-диспетчерского управления системы нефтедобычи на основе осуществления программы комплексной автоматизации технологических процессов, широкого внедрения автоматизированных систем управления.

В данной работе рассмотрена система автоматизации дожимной насосной станции (ДНС).

1. Автоматизия работы дожимной насосной станции

Дожимная насосная станция (рис. 1) после первичной сепарации нефти обеспечивает ее переток к установкам дальнейшего технологического цикла и поддержание там необходимого давления.

Рис. 1 - Технологическая схема работы дожимной насосной станции

Основу этой станции составляют центробежные насосы с самозаливкой, к которым нефть поступает из установки первичной сепарации или из резервных буллитов. Закачка нефти в насосы производится через фильтры, которые устанавливаются как на всасывающих, так и на выкидных магистралях этой системы. Станция укомплектована всегда рабочим и резервным насосами. Резервируют также фильтры и на ее выкидной магистрали. Включение в работу каждого из насосов или одного из фильтров на выкидной магистрали производится с помощью приводных задвижек, управляемых системой автоматики.

Система автоматизации управления работой дожимной насосной станции не только обеспечивает поддержание заданного давления нефти на выкидной магистрали, но и производит своевременное переключение рабочей линии на резервную в случае выхода из строя рабочего насоса или закупорки одного из рабочих фильтров. Для контроля рабочих параметров в технологической цепочке дожимной насосной станции используют следующие технические средства:

DM1 - DM4 - дифференциальные манометры;

P1, P3 - датчики давления на входе насосов;

P2, P4 - датчики давления на выходе насосов;

Z1 - Z6 - приводы задвижек и датчики их положения;

F1 - F4 - фильтры на линии нефти.

Эта аппаратура подключается к соответствующим портам контроллера системы управления дожимной насосной станцией по схеме, представленной на рис. 2.

К модулю (порту) дискретного ввода этого контроллера подключены, как и в предыдущем случае, кнопки управления и датчики положения задвижек. Аналоговые датчики давления и дифференциальные манометры подключены на вход модуля (порта) аналогового ввода. Двигатели всех задвижек и приводы насосов подключены к модулю (порту) дискретного вывода.

Рис. 2 - Структура нижнего уровня системы управления дожимной насосной станцией

нефть добыча насосный станция

Алгоритм управления дожимной насосной станцией имеет сложную структуру, состоящую из нескольких взаимосвязанных подпрограмм. Основная программа этого алгоритма представлена на рис. 3.

По этому алгоритму после ввода величины задающих сигналов выполняется цикл ожидания нажатия кнопки «Пуск», после нажатия которой происходит автоматический выбор насоса № 1 и задвижки Z5 в качестве рабочего оборудования технологического цикла. Этот выбор фиксируется присвоением единичного значения константам N и K. По значению этих констант в дальнейшем будет определен выбор направления ветвления в подпрограммах алгоритма.

Эти подпрограммы запускаются основным алгоритмом сразу же после подачи команды на открытие задвижки Z1, соединяющей технологическую линию дожимной насосной станции с установкой первичной сепарации нефти. Первая из этих подпрограмм «Пуск насосов» управляет процессом запуска рабочего (или резервного) насоса, а другая подпрограмма «Контроль параметров» производит текущий контроль основных параметров технологического процесса и в случае их несоответствия заданным значениям осуществляет переключения в технологической цепочке этого процесса.

Подпрограмма «Контроль параметров» запускается циклически на всем протяжении рабочего цикла этого процесса. Одновременно в этом цикле производится опрос кнопки «Стоп», при нажатии которой закрывается задвижка Z1. Затем, прежде чем остановить основную программу, алгоритм запускает на выполнение подпрограмму «Останов насоса». По этой подпрограмме выполняются последовательные действия по остановке рабочего насоса.

По подпрограмме «Пуск насоса» (рис. 4) первоначально производится анализ содержания параметра N, которым определен номер рабочего насоса (соответственно N=1 для насоса № 1 и N=0 для другого насоса). В зависимости от значения этого параметра алгоритм выбирает ветвь запуска соответствующего насоса. Эти ветви аналогичны по структуре, но отличаются только параметрами технологических элементов.

Рис. 3 - Алгоритм управления дожимной насосной станцией

Первой процедурой выбранной ветви этой подпрограммы производится опрос дифференциального датчика давления DM1, содержание которого определяет рабочее состояние соответствующего фильтра на входе насосного агрегата. Показания этого датчика сравниваются с заданным предельным значением относительного давления на фильтре. При зашламованности фильтра (когда он требует чистки) разность давлений на его входе и выходе будет превышать заданное значение, поэтому данная технологическая ветвь не может быть запущена в работу, и потребуется переход на запуск резервной линии, т.е. резервного насоса.

В случае нормального состояния фильтра его фактическое разностное давление меньше заданного, и алгоритм переходит к опросу датчика, контролирующего давление на входе выбранного насоса. Снова показания этого датчика сравниваются с заданным значением. В случае недостаточного давления на входе насоса он не сможет выйти на рабочий режим, поэтому он также не может быть запущен, а это снова потребует перехода на запуск резервного насоса.

Рис. 4 - Структура подпрограммы «Пуск насоса»

В случае нормального значения давления на входе насоса следующая команда подпрограммы запускает его, при этом параметру N присваивается соответствующее числовое значение, а дискретные датчики контроля запуска насоса контролируют этот процесс. После этого запуска опрашивается датчик, контролирующий давление на выходе запущенного насоса. В случае, если это давление окажется ниже заданного уровня, насос тоже не может работать в нормальном режиме, поэтому и этот случай требует запуска резервного насоса, но только после остановки запущенного насоса.

Если же заданное давление на выходе насоса достигнуто, то это значит, что он вышел на заданный режим, поэтому на следующем шаге алгоритм открывает задвижку, соединяющую выход насоса с линией выходных фильтров системы. Открытие каждой из задвижек фиксируется дискретными датчиками ее положения.

На этом подпрограмма запуска насоса выполнила свои функции, поэтому на следующем шаге производится выход из нее в основную программу, где затем производится запуск следующей подпрограммы «Контроль параметров» работающей системы. Эта подпрограмма выполняется в цикле до тех пор, пока технологический процесс не будет остановлен кнопкой «Стоп».

Структурно подпрограмма «Контроль параметров» идентична подпрограмме «Пуск насоса», однако имеет некоторые особенности (рис. 5).

Рис. 5 - Структура подпрограммы «Контроль параметров»

В этой подпрограмме, как и в предыдущей, производится последовательный опрос тех же датчиков и сравниваются их показания с заданными значениями контролируемых параметров. В случае их несоответствия подается команда на закрытие соответствующей задвижки и на остановку соответствующего насоса, при этом параметру N присваивается значение, противоположное предыдущему. После всего этого производится запуск подпрограммы «Пуск насоса», по которой включается в работу резервный насос.

Если все контролируемые параметры соответствуют заданным значениям, то, прежде чем выйти в основную программу, алгоритм проверяет состояние фильтров основной магистрали. Для этой цели запускается подпрограмма «Управление задвижками Z5 и Z6» (рис. 6), по которой в случае выхода из строя одного из этих фильтров включается в работу резервный фильтр.

Рис. 6 - Структура подпрограммы «Управление задвижками Z5 и Z6»

По этой подпрограмме через анализ значения параметра K в ней выбирается рабочая ветвь, по которой производится опрос дифференциального манометра работающего фильтра. В случае нормальной работы фильтра разность фактического давления между входом и выходом фильтра не будет превышать заданного значения, поэтому алгоритм по условию «да» выходит из подпрограммы без изменения структуры подключения элементов в магистрали.

В случае превышения этой разницей заданного значения алгоритм следует по условию «нет», в результате чего закрывается работающая задвижка и открывается резервная, а параметру Nприсваивается противоположное значение. После выполнения этого производится выход из этой подпрограммы в предыдущую, а из нее в основную программу.

Процесс контролируемого пуска рабочего насоса, а в случае его поломки запуска резервного производится алгоритмом автоматически. Аналогично осуществляется контролируемый запуск фильтров через включение задвижек в основной магистрали.

При нажатии на кнопку «Стоп» цикл непрерывного контроля за параметрами системы прекращается, закрывается задвижка, подключающая дожимную насосную станцию к сепарационной установке, и производится переход к подпрограмме «Остановка насоса» (рис. 7).

По этой подпрограмме на основе анализа параметра N выбирается одна из двух идентичных ветвей следования алгоритма. По ней алгоритмом первоначально подается команда на закрытие задвижки, установленной на выходе работающего насоса. После закрытия ее другая команда останавливает работающий насос. Затем новым анализом значения уже параметра K выбирается ветвь алгоритма, по которой закрывается задвижка работающего магистрального фильтра, после чего алгоритм останавливает свою работу.

Рис. 7 - Структура подпрограммы «Остановка насоса»

Список литературы

1. Сажин Р.А. Элементы и структуры систем автоматизации технологических процессов нефтяной и газовой промышленности. Изд-во ПГТУ, Пермь, 2008. ? 175 с.

2. Исакович Р.Я. и др. Автоматизация производственных процессов нефтяной и газовой промышленности. «Недра», М., 1983 г.

Размещено на Allbest.ru

Подобные документы

    Автоматизация технологического процесса на ДНС. Выбор технических средств автоматизации нижнего уровня. Определение параметров модели объекта и выбор типа регулятора. Расчёт оптимальных настроек регулятора уровня. Управление задвижками и клапанами.

    курсовая работа , добавлен 24.03.2015

    Описание принципиальной технологической схемы дожимной насосной станции. Принцип работы ДНС с установкой предварительного сброса воды. Отстойники для нефтяных эмульсий. Материальный баланс ступеней сепарации. Расчет материального баланса сброса воды.

    курсовая работа , добавлен 11.12.2011

    Определение расходов воды и скоростей в напорном трубопроводе. Расчет потребного напора насосов. Определение отметки оси насоса и уровня машинного зала. Выбор вспомогательного и механического технологического оборудования. Автоматизация насосной станции.

    курсовая работа , добавлен 08.10.2012

    Описание технологического процесса перекачки нефти. Общая характеристика магистрального нефтепровода, режимы работы перекачивающих станций. Разработка проекта автоматизации насосной станции, расчет надежности системы, ее безопасность и экологичность.

    дипломная работа , добавлен 29.09.2013

    Технология компримирования газа, подбор и обоснование необходимого оборудования, технологическая схема производства работ. Требования к системе автоматизации, ее объекты, средства. Логическая программа запуска компрессорной установки, работа контроллера.

    дипломная работа , добавлен 16.04.2015

    Технологический процесс автоматизации дожимной насосной станции, функции разрабатываемой системы. Анализ и выбор средств разработки программного обеспечения, расчет надежности системы. Обоснование выбора контроллера. Сигнализаторы и датчики системы.

    дипломная работа , добавлен 30.09.2013

    Общая характеристика насосной станции, расположенной в прокатном цехе на участке термоупрочнения арматуры. Разработка системы автоматического управления данной насосной станцией, которая своевременно предупреждает (сигнализирует) об аварийной ситуации.

    дипломная работа , добавлен 05.09.2012

    Описание нефтеперекачивающей станции, ее принципиальная технологическая схема, принцип работы и функциональные особенности блоков. Программно-технический комплекс и назначение автоматизации. Выбор и обоснование датчиков, преобразователей, контроллеров.

    дипломная работа , добавлен 04.05.2015

    Характеристика мелиоративной насосной станции, выбор принципиальной электрической схемы. Составление схемы соединений щита управления. Экономическая эффективность схемы системы автоматического управления. Определение надежности элементов автоматики.

    курсовая работа , добавлен 19.03.2011

    Описание принципиальной технологической схемы дожимной насосной станции с установкой предварительного сброса воды. Принцип работы установки подготовки нефти "Хитер-Тритер". Материальный баланс ступеней сепарации и общий материальный баланс установки.