Гидролизный водородный газогенератор для сварки своими руками. Водородная сварка - основные отличия от стандартных способов сварки


Подвидом дуговой сварки выступает сварка водородная. Технология основана на распаде воды до двух составляющих - водорода и кислорода. В чем специфика работы? Чем водородная сварка отличается от дуговой, а чем на нее похожа? Какое оборудование используется для работы? В данном материале вы найдете ответы на эти и другие вопросы.

Данная технология относится к категории безвредных, поскольку в процессе горения дуги задействован один химический элемент - водород (точнее, водяной пар). Однако за этим преимуществом кроется пара недостатков технологии. Например, поверх заготовки может образоваться слой шлака, либо сварочный шов будет тонким. Чтобы его усилить, применяют связывающие кислород органические соединения вроде толуола, бензина или бензола. Их понадобится малое количество, поэтому водородная сварка обойдется сварщику дешевле, чем другой тип газопламенной обработки.

Дуга при сварке горит в атмосфере водорода между двух неплавящихся вольфрамовых электродов. Пламя горючего элемента незаметно при дневном свете, поэтому часто применяют специальные датчики. Крупные и тяжелые баллоны с газом не используются, поскольку за их эффективностью кроется опасность для здоровья работника. Зато возникает необходимость вместо емкостей применять аппараты, заполненные водой, в которых под действием электричества жидкость распадалась бы на водород и кислород.

Решение было найдено - им стал электролизер. Это подвид сварочного аппарата, где вода распадается до двух составляющих, причем в оптимальной пропорции. Происходит диссоциация после проведения через дистиллят электрического тока. Ранние разработки удивляли громоздкостью - электролизеры могли сварить металлические листы толщиной до 6 мм, при этом весили более 300 кг. Позже создали передвижные модели, благодаря которым процесс соединения деталей стал эффективнее.

Подвидом водородной сварки выступает атомно-водородная. Обычно применяется при соединении чугунных или стальных деталей, отличается повышенной экзотермией. Редко применяется на производстве, поскольку есть опасный фактор - повышенное напряжение.

Преимущества сварки водородом

Методика известна не так, как ручная или полуавтоматическая сварка, однако имеет ряд достоинств, с которыми сварщику нужно познакомиться. Среди них:

  • редкая перезарядка сварочного аппарата;
  • оперативный вход в рабочий режим (до 5 минут в зависимости от расхода газа и параметров атмосферы);
  • высокая мощность при малых габаритах оборудования;
  • экологическая чистота (в отличие от сварки ацетиленом, где выделяются токсичные пары азота, отравляющие организм);
  • сварочный аппарат относится к классу пожаробезопасного оборудования;
  • конструкция и принцип действия таковы, что препятствуют не только возгоранию установки, но и взрыву;
  • широкий спектр материалов для обработки (цветмет, чугун, сталь, стекло и даже керамика);
  • исключено окисление свариваемых участков;
  • доступность главного расходного элемента - воды;
  • для бесперебойной работы необходимы лишь источник тока и вода (желательно дистиллированная).

Теперь - пара слов о составных элементах оборудования, используемого для водородной сварки.

Составные элементы аппарата

Традиционно основными элементами устройств для сварки водородом являются:

  • горелка;
  • шланг;
  • заправочное устройство;
  • запасное сопло;
  • охладитель-обогатитель.

Горелка предназначена для подачи газа в область соединения заготовок. Температуру пламени можно регулировать в диапазоне 600-2600 градусов. Сварочный аппарат достаточно мощный, позволяет выполнять ручную и автоматическую сварку. Если пользователь имеет базовые навыки работы с газопламенным оборудованием, эксплуатация электролизеров для водородной сварки проблем не составит. Теперь рассмотрим обработку заготовок детальнее.

Характеристика процесса

При выборе водородной сварки как метода соединения деталей пользователь обнаружит, что последнее происходит намного быстрее, чем при той же аргонодуговой или ацетиленовой. Сначала под действием высоких температур диссоциируются (распадаются) молекулы воды на кислород и водород. Далее, одноатомный водород преобразуется в двухатомный, за счет чего выделяется дополнительная тепловая энергия, ускоряющая процесс соединения.

Этот же водород расходуется на защиту зоны сварки, поэтому шов получается качественным - прочным и герметичным. Исключение составляет лишь медь и ее сплавы (за счет химических свойств материала).

Выделяемое тепло позволяет сваривать даже вольфрам (самый тугоплавкий металл с температурой плавления 3422 градуса). Здесь водород вновь выполнит роль защитного газа, препятствуя загрязнению углеродом, азотом или кислородом. Дуга, образуемая горелкой, достаточно стабильна и не зависит от первичной обработки соединяемых изделий.

Обзор оборудования

Классический пример сварочного аппарата для водородной сварки - продукт отечественного производителя «Лига». Устройства работают от сети 220 В и в качестве «топлива» используют дистиллированную воду. Применение оборудования снижает себестоимость сварочного процесса в десятки раз по сравнению с использованием габаритных газовых баллонов.

О принципе действия - коротко:

  • через дистиллят проходит электрический ток, превращая его в водород и кислород;
  • полученная смесь проходит через охладитель-обогатитель газа, где остается лишняя влага;
  • в этом же элементе электролизера к водороду добавляются пары летучих углеводородов (бензол, спирт и т.д.);
  • смесь поступает в газовую горелку;
  • для контроля мощности в конструкции предусмотрены регулятор тока и гаситель пламени.

Компания «Лига» выпускает несколько модификаций электролизных установок, а именно:

  • 02 С;
  • 02 0;
  • 22 Д.

Наиболее популярные в среде профессиональных сварщиков устройства - «Лига-02» и «Лига-22».

Водородная сварка обладает рядом преимуществ, выгодно выделяющих ее на фоне дуговой, ручной и других типов сварки. Первое достоинство для пользователя - экологическая чистота используемых элементов и безопасность. По этой причине электролизной установкой целесообразно пользоваться при больших объемах работ, либо при сварке внутри компактных помещений.

Известны ли вам нюансы работы с оборудованием и другие его особенности? Поделитесь своими навыками и знаниями в обсуждении к статье.

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом - сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и - вот неполный список альтернативных вариантов. Казалось бы - живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии - водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ. Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H 2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы - мировой океан на 2/3 состоит из химического элемента H 2 , да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом». Вот только одна проблема - для получения чистого H 2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один - кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула - HHO, а теплотворная способность - 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором. Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор:

Область применения

Сегодня электролизёр - такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела - всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд - приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить - их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами. Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

Электрическая схема ШИМ-регулятора Схема единичной пары электродов, используемых в топливной ячейке Мейера Схема ячейки Мейера Электрическая схема ШИМ-регулятора Чертёж топливной ячейки
Чертёж топливной ячейки Электрическая схема ШИМ-регулятора Электрическая схема ШИМ-регулятора

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование - достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    - диаметр внешней трубки - 25.317 мм;
    - диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома:

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 - 7 мм - для подачи воды в пространство между электродами и толщиной 8 - 10 мм - для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание - жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение - безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

Благодаря разносторонним увлечениям пишу на разные темы, но самые любимые - техника, технологии и строительство. Возможно потому, что знаю множество нюансов в этих областях не только теоретически, вследствие учебы в техническом университете и аспирантуре, но и с практической стороны, так как стараюсь все делать своими руками.

Условиях. Представленное устройство не имеет накопительных баллонов для газа, что делает его довольно безопасным в эксплуатации. Водород производится методом электролиза, и вырабатывается из обычной воды. Газ, производимый в необходимых количествах ННО генератором, тут же сжигается в горелке, что исключает возможность его накапливания и взрыва.

Необходимые материалы для постройки горелки:
- Пластины из нержавейки, примерно 1 мм толщиной;
- Два болта М6х150 с шайбами и гайками;
- Кусок прозрачной трубки;
(В проекте использовалась трубка из водяного уровня)
- Штуцера с «елочкой»;
(их диаметр подбирается под шланг с водяного уровня)
- Пластиковый контейнер на полтора литра;
(подойдет обычный контейнер для хранения пищи)
- Фильтр проточной очистки;
(можно использовать фильтр стиральной машинки)
- Обратный водный клапан.

Инструменты используются стандартные, которые имеются в каждой мастерской.

Первым шагом будет создание сердца ННО генератора – электролизер. Он выполнен из листов нержавеющей стали, расположенных последовательно друг за другом через равные промежутки и скрепленных болтами.

Как говорится в источнике, марка нержавеющей стали нужна либо зарубежная AISI316L, ее отечественный аналог 03X16H15M3. Но это в идеале, в принципе можно использовать любую.

Почему используется именно нержавеющая сталь, а не к примеру обычный черный метал, ведь он тоже проводит ток? Дело в том что, во первых черный метал ржавеет в воде, во вторых в воду при работе аппарата будет добавляться щелочь, что при условии прохождения электрического тока будет создавать для пластин достаточно агрессивную среду, в которой обычное железо просто долго не протянет.

Из листа нержавейки нужно вырезать 16 квадратных пластин. По размеру они должны быть такими, чтобы свободно входили в пластиковый контейнер. Резать их можно болгаркой или лобзиком.

После этого, в каждой пластине просверливается по два отверстия, диаметром 6 мм, под болты. С противоположной стороны нужно спилить часть уголка.
Вот что должно получится:

Теперь еще немного теории. Принцип работы водородного генератора основывается на том, что при прохождении постоянного электрического тока через электролит между пластинами, ток расщепляет воду на ее составляющие: кислород и водород.

Из этого следует, что из пластин будут собраны две электрически изолированных друг от друга батареи, на одну из которых будет поступать плюс, на другую минус (анод и катод).

Вот как это выглядит схематически:

Такое количество пластин нужно для того, чтобы повысить площадь электрического воздействия на электролит, тем самым увеличив ток, проходящий через электролит, и как следствие количество вырабатываемого водорода.

Существует довольно много вариантов подключения пластин, и данный вариант не является самым оптимальным. Он используется, потому что является довольно простым в изготовлении и коммутации.

Данная схема рассчитана на малое напряжение и большой ток.

Для изоляции пластин друг от друга были использованы кусочки прозрачной трубки:

Толщина кольца должна равняться приблизительно 1 мм.

Скрепляются пластины так: на болт одевается шайба, затем пластина, затем три шайбы, пластина, три шайбы и т.д. Так собираются анод и катод, по 8 пластин.


Затем одна батарея вставляется в другую, развернувшись на 180 градусов. Между пластинами в качестве диэлектрика вставляются вырезанные ранее кусочки трубки.

После сборки две батареи прозваниваются между собой, и если нет короткого замыкания, устанавливаются в контейнер.

В контейнере просверливаются отверстия под болты, на них будет поступать напряжение.

В крышке контейнера просверливается отверстие под штуцер. Перед установкой самого штуцера, его посадочное место лучше промазать герметиком или силиконом. То же самое касается и прилегающей поверхности крышки. Чтобы проверить контейнер на герметичность его можно опустить в емкость с водой. Если на нем появятся пузырьки, значит контейнер не герметичный.

Для повышения генерации газа, в воду необходимо добавить некоторые примеси. Лучше всего подойдет гидроксид натрия, который содержится в средствах для прочистки труб от засоров.

В конструкции данного аппарата большее число рабочих пластин, модифицированные боковые платы и надежный штуцер для выхода горючей газовой смеси), но действующий по тому же принципу электролизер.

Тем, кто впервые сталкивается с подобным устройством, нелишне, думается, в самых общих чертах пояснить (а остальным напомнить), в чем суть такого рода конструкций. А она достаточно проста.

Между боковыми платами, соединенными четырьмя шпильками, размещены металлические пластины-электроды, разделенные резиновыми кольцами. Внутренняя ячеистая полость такой батареи на 1/2...3/4 объема заполнена слабым водным раствором щелочи (КОН или NaOH). Приложенное к пластинам напряжение от источника постоянного тока вызывает разложение (электролиз) раствора, сопровождающееся обильным выделением водорода и кислорода. Эта смесь газов, пройдя через специальный жидкостный затвор (рис. 1а), поступает далее на горелку и, сгорая, позволяет получить столь необходимую для многих технологических процессов (например, резки и сварки металлов) высокую температуру - около 1800° С.

Рис.1. Аппарат для резки и сварки, работающий на продуктах электролиза слабого щелочного раствора:

а - блок-схема, б - готовая самодельная конструкция:
1 - блок питания выпрямленным напряжением электросети, 2 - электролизер, 3 - затвор жидкостный, 4 - горелка газовая, 5 - амперметр, 6 - ручка включения аппарата, 7 - ручка смены режима работы (скачкообразное изменение отдаваемой в нагрузку мощности), 8 - ручка управления потенциометрами, 9 - скоба хранения электрошнура в свернутом состоянии, 10 - корпус переносной деревянный, 11 - штепсельная вилка.

Производительность электролизера зависит от концентрации щелочи в растворе и прочих факторов. А самое главное - от размеров и количества пластин-электродов, расстояния между ними, что, в свою очередь, определяется параметрами блока электропитания - мощностью и напряжением (из расчета 2...3 В на гальванический промежуток между двумя расположенными рядом друг с другом пластинами).

Предлагаемые мною конструкции источника постоянного тока доступны для изготовления в условиях «домашней мастерской» и начинающему самодельщику. Они способны обеспечить надежную работу даже «восьмидесятиячеистого» (пластин-электродов у такого - 81 шт.) электролизера, а тем более - «тридцатиячеистого». Вариант, принципиальная электрическая схема которого изображена на рис. 4, позволяет к тому же легко осуществлять регулировку мощности для оптимального согласования с нагрузкой: на первой ступени - 0...1,7 кВт, на второй (при включении SA1) - 1,7...3,4 кВт.

И пластины для электролизера предлагаются соответствующие - 150x150 мм. Изготавливаются они из кровельного железа толщиной
0,5 мм. Помимо газоотводного 12-мм отверстия в каждой пластине сверлится еще по четыре установочных (диаметром 2,5 мм), в которые при сборке продеваются вязальные или велосипедные спицы. Последние нужны для лучшего центрирования пластин и прокладок, а потому на окончательном этапе сборки из конструкции убираются.

Рис.2. Электролизер («восьмидесятиячеистый» вариант):

1 -плата боковая (фанера, s12, 2 шт.), 2 - щека прозрачная (оргстекло, s4, 2 шт.), 3 - пластина-электрод (жесть, s0,5; 81 шт.), 4 - кольцо разделительное герметизирующее (5-мм резина кислото- и щелочеупорная, 82 шт.), 5 - втулка-изолятор (кембриковая трубка 6,2x1, L35, 12 шт.), 6 - шпилька Мб (4 шт.), 7 - гайка Мб со стопорной шайбой (8 шт.), 8 - трубка вывода горючей газовой смеси, 9 - раствор слабощелочной (2/3 внутреннего объема электролизера), 10 - вывод контактный (медь рафинированная, 2 шт.), 11 - штуцер («нержавейка»), 12 - гайка накидная М10, 13 - шайба штуцера («нержавейка»), 14 - манжета (резина кислото- и щелочеупорная), 15 - горловина заливная («нержавейка»), 16 - гайка накидная M18, 17 - шайба заливной горловины («нержавейка»), 18 - шайба герметизирующая (резина кислото- и щелочеупорная), 19 - крышка заливной горловины («нержавейка»), 20 - прокладка герметизирующая (резина кислото- и щелочеупорная).

Вообще-то пришлось немало поломать голову, прежде чем «водогорелка» стала удобной и надежной, как лампа Эдисона: включил - заработала, выключил - работать перестала. Особенно хлопотным делом оказалась модернизация не самого электролизера, а подсоединяемого к нему на выходе жидкостного затвора. Но стоило отказаться от ставшего было шаблонным применения воды в качестве заслона от распространения пламени внутрь газообразующей батареи (по соединительной трубке) и обратиться к использованию... керосина, как все тут же пошло на лад.

Почему выбран именно керосин? Во-первых, потому, что в отличие от воды эта жидкость в присутствии щелочи не вспенивается. Во-вторых, как показала практика, при случайном попадании капель керосина в пламя горелки последнее не гаснет - наблюдается лишь небольшая вспышка. Наконец, в-третьих: будучи удобным «разделителем», керосин, находясь в затворе, оказывается безопасным в пожарном отношении.

По окончании работы, во время перерыва и т.п. горелка, естественно, гасится. В электролизере образуется вакуум, и керосин перетекает из правого бачка в левый (рис. 3). Потом - барбатация воздуха, после чего горелку можно хранить сколько угодно: в любой момент она готова к использованию. При ее включении газ давит на керосин, который вновь перетекает в правый бачок. Затем начинается барбатация газа...

Рис.3. Керосиновый затвор и принцип его действия

(а - при работающем электролизере, б - в момент отключения аппарата):

1 - баллон (2 шт.), 2 - пробка (2 шт.), 3 штуцер вводный, 4 - штуцер выводной, 5 - керосин, 6 - переходник (стальная труба).

Соединительные трубки в аппарате - полихлорвиниловые. Лишь к самой горелке ведет тонкий резиновый шланг. Так что после отключения питания достаточно эту «резину» перегнуть руками - и пламя, выдав напоследок легкий хлопок, потухнет.

И еще одна тонкость. Хотя блок питания (см. рис. 4) и способен обеспечить электроэнергией 3,4-киловаттную нагрузку, пользоваться столь большой мощностью в любительской практике случается очень редко. И чтобы «не гонять электронику» чуть ли не вхолостую (в однополупериодном режиме выпрямления, когда на выходе 0...1.7 кВт), нелишне иметь в распоряжении и другой источник питания электролизера - поменьше и попроще (рис. 5).

Рис.4. Принципиальная электрическая схема блока электропитания.

По сути, это - двух-полупериодный, известный многим самодельщикам регулируемый выпрямитель. Причем со связанными друг с другом (механически) «движками» 470-омных потенциометров. Конструктивно такую связь можно осуществить либо при помощи простейшей зубчатой передачи с двумя текстолитовыми шестернями, либо воспользоваться более сложным устройством типа верньера (в бытовом радиоприемнике).

Рис.5. Вариант блока питания с использованием в схеме тиристоров и самодельного трансформатора.

Трансформатор в блоке питания самодельный. В качестве магнито-провода применен набор Ш16x32 из трансформаторной стали. Обмотки содержат: первичная - 2000 витков ПЭЛ-0,1; вторичная - 2x220 витков ПЭЛ-0,3.

Практика показывает: рассмотренный самодельный аппарат для газовой резки и сварки даже при самой напряженной эксплуатации способен исправно служить весьма продолжительное время. Правда, раз в 10 лет требуется проводить основательное техобслуживание, в основном из-за электролизера. Пластины последнего, работая в агрессивной среде, покрываются окисью железа, которая начинает выступать в роли изолятора. Приходится пластины промывать с последующей зачисткой на наждачном круге. Более того, заменять четыре из них (у отрицательного полюса), разъеденных кислотными остатками, собирающимися вблизи «минуса».

Применение так называемых сливных отверстий (кроме заливного и газоотводного) также вряд ли можно считать оправданным, что и было учтено при разработке аппарата. Столь же необязательным является и ввод в схему аппарата бидонов для сбора накапливающейся сверхагрессивной щелочи. К тому же эксплуатация «безбидонной» конструкции показывает, что этой «вредоносной жидкости» способно собраться за 10-летний период на дне керосинового затвора не более полстакана. Скопившуюся щелочь удаляют (например, при техобслуживании), а в затвор заливают очередную порцию чистого керосина.

В.Радьков, Татарстан
МК 03 1997

Сегодня среди всех видов газопламенных обработок все большую популярность получает сварка водородная. Такая газосварочная технология основана прежде всего на процессе электрохимического распада воды на два химических элемента: водород и кислород.

Процедура сварки отличается наибольшей эффективностью и обладает большими преимуществами перед сваркой, где главным элементом выступает соединение кислорода с ацетиленом.

Водородную сварку можно отнести к категории безвредных технологий, так как весь процесс горения основан на единственном элементе – водяном паре. В ходе работы температура горелки может повыситься до 2600°С, а это значит, что данная технология позволит осуществить любую сварку, спаивание или поможет прорезать различные виды черных металлов.

Читайте также:

Технология процесса водородной сварки

Так как водородное пламя имеет ряд преимуществ перед ацетиленовым, его чаще используют для прорезания и спайки изделий из металла. Из-за того что в результате горения выделяется водяной пар, такая сварка считается самой безопасной. При использовании в ходе сварки водорода как топливного элемента, на покрытии металла может возникнуть слой шлака большой толщины. Выполняемый при этом сварочный шов будет иметь тонкую толщину и рыхлость. Чтобы избежать этого, в основном используют органические соединения, которые, наоборот, связывают кислород. Для этого лучше применять различные углеводороды (бензин, толуол и др.) и подогревать их до достижения температуры 80% от температуры кипения. При сварке понадобится минимальное количество углеводородов для максимального результата, поэтому она и намного дешевле, чем другая газопламенная обработка.

При использовании водородной сварки не нужно применять газовые баллоны, являющиеся эффективными источниками смеси водорода с кислородом. Дело в том, что они очень опасны при эксплуатации. Когда происходит сварка, водородное пламя совсем не видно при дневном свете. Поэтому для облегчения работы необходимо использовать специальные датчики. Надежность источников газа зависит прежде всего от аппаратов, работа которых возможна при наполненности водой, где с помощью воздействия электроэнергии она распадается на кислород и водород. При помощи таких электролизеров очень просто выполняется электролизная сварка, где в качестве основного элемента соединения деталей используется водородно-кислородная смесь.

В некоторых случаях используется атомно-водородная сварка, представляющая собой электрохимический процесс плавления. Действие достигается в результате нагревания электрической дуги расщепления водорода. По уровню содержания тепла атомно-водородная сварка несколько отличается от ацетиленово-кислородной сварки и других видов сварок. В основном данный вид используется при сварке чугуна или стали. В промышленных предприятиях атомно-водородная сварка применяется в редких случаях по причине высокого напряжения, которое опасно для любого человека.

Вернуться к оглавлению

Виды сварочных аппаратов

Для осуществления любого вида сварочных работ необходимо применять аппарат для сварки, отсутствие которого на любом строительном объекте или в бытовых условиях недопустимо. Ведь он является единственным аппаратом с возможностью скрепления изделий из металла.

При водородной сварке использованию подлежит водородно-сварочное оборудование. Водородный аппарат используется не только для резки и спайки разных видов металлов, но и для отделки различного пластика, стекла или кварца.

Этот вид оборудования подлежит использованию в отраслевых областях, где для работы нужен нагрев до максимальных температур.

Сварочный аппарат работает за счет водорода, который вырабатывается в самом аппарате. Вследствие распада молекул воды на два важных элемента, кислород и водород, удается получить водород. После этого образуется газовая смесь, имеющая максимальную энергию. При помощи нее можно осуществлять работы по соединению различных металлических конструкций.

Для того чтобы это устройство работало правильно, нужно подготовить 1,5 л дистиллированной воды и освободить доступ к сети электропитания.

Это оборудование очень легко эксплуатируется, не требует частого перезаряжания и имеет небольшую трудоемкость. Работа начинается уже через несколько минут после включения в сеть электропитания. При помощи аппаратов водородной сварки можно осуществлять сварку деталей толщиной до трех миллиметров, а это значит, что он может использоваться ювелирами, стоматологами, специалистами по ремонту бытовой техники.

Водородно-кислородные электролизеры отличаются мощностью, в зависимости от которой допускается выполнение различных сварочных работ.

К ним относится спайка, сварочные работы, кислородная резка и другие. При сварке водородом можно выполнить огромный перечень работ, начиная с микросварки и заканчивая резкой стальных листов. Эти аппараты малогабаритные и могут применяться для сварки листов размером до 2 мм при мощности 1,8 кВт.

В некоторых случаях применяются ацетиленовые генераторы и баллоны. Их целесообразно применять только в полевых условиях, где нет возможности использовать электричество. Если имеется разъем электропитания, то лучше использовать громоздкое сварочное оборудование.

Атомно-водородная сварка немного отличается своим технологическим процессом от обычного вида таких работ. В процессе происходит подача водорода в сварочную область. При помощи сварочной горелки можно с легкостью определить направление и объем смеси.

В ходе выполнения сварки с элементами кислорода и водорода, происходит оплавление краев горелки из-за слишком высокого уровня температуры. Поэтому она подлежит немедленному очищению. Такой процесс газосварки можно выполнить как в ручном, так и в автоматическом режиме.

Специалисты, имеющие навыки в этой области, способны делать эти необходимые работы без чьей-либо помощи.

Нужно просто купить аппарат для сварки с эффектом 210, где в упаковке имеется еще одна горелка. Этот аппарат начинает работу после включения его в сеть электропитания 220 Вт. Им можно легко достичь результата при резке металлических пластин небольшой толщины либо пластин из легированных сталей.