Лекарственная устойчивость бактерий. Лекарственная устойчивость


Одной из наиболее актуальных проблем в лечении инфекционных заболеваний является устойчивость бактерий к определенным группам медикаментов. В современной медицине различают естественную и приобретенную устойчивость (резистентность):

  1. Приобретенная лекарственная устойчивость – развивается как результат приобретения микробом новых свойств либо потеря старых под действием различных факторов окружающей среды, в том числе благодаря дезинфектантам.
  2. Естественная (или природная) лекарственная устойчивость – является врожденным свойством определенной бактерии.

Большая часть бактерий обладает более выраженной изменчивостью, нежели у представителей высшего класса, что объясняется коротким сроком развития и другими аспектами внешней среды. Благодаря внешним дезинфектантам может провоцироваться образование спор, которые практически неуязвимы для воздействия. Появление спор – это способ выживания для бактерий, которые попали в неблагоприятные условия. С помощью спор бактерия может пережить этот период и дождаться более подходящих для жизни условий.

Довольно давно установлено, что микробы могут формировать устойчивость к дезинфектантам. Бактериальная устойчивость к дезинфектантам представляет собой свойство микробов, которое заключается в способности их к размножению и росту в условиях прикосновения к дезинфектантам определенных концентраций. Выделяют естественную и приобретенную бактериальную устойчивость к внешним дезинфектантам.

Известны разнообразные методики исследования микробной устойчивости к дезинфектантам. Наиболее известна методика выяснения устойчивости к дезинфектантам Красильникова А.П., Гудковой Е.И. Подобные методики обеспечивают не только оценку большей части дезинфицирующих средств, но и антибактериальной активности, присущей тем или иным внешним дезинфектантам. Одной из наиболее распространенных является устойчивость бактерий к химическим веществам группы аммониевых соединений.

Для проведения исследования на выявление устойчивости к дезинфектантам применяют чистые бактериальные культуры.

Антибактериальная терапия

Обширное использование антибактериальных препаратов в практической медицине, а также ветеринарии способствовало распространению устойчивых к антибиотикам бактериальных клеток. Как результат, устойчивые бактерии делятся на:

  • резистентные (устойчивые) к одному препарату бактерии;
  • одновременно резистентные микроорганизмы к лекарствам нескольких фармакологических групп (множественная устойчивость).

Первая группа микроорганизмов может объединять резистентные к нескольким антибиотикам штаммы. В данном случае имеется в виду наличие близкого по химической природе состава. Так, микробы, устойчивые к рифампицину, обладают резистентностью к стрептоварицину, так как этим антибиотикам присущий общий механизм воздействия – угнетение функциональности РНК-полимеразы. Лекарственная устойчивость к стрептомицину свидетельствует также о резистентности к таким антибиотикам, как неомицин, дигидрострептомицин.

Основной механизм формирования вторичной устойчивости микроба к антибиотикам заключается в появлении генов резистентности, которые переносятся плазмидами и транспозонами. Различают следующие механизмы биохимической устойчивости к антибиотикам:

  • перестройка в структуре мишени воздействия;
  • инактивация антибактериального препарата;
  • активное освобождение бактериальной клетки от антибиотика;
  • изменение проницаемости наружных структур бактерии;
  • образование «шунта» метаболизма.

Нарушение структуры мишени воздействия подразумевает изменение структуры ферментов, которые стимулируют выработку пептидогликана. Лекарственная резистентность к внешним антибиотикам, имеющим разное происхождение, развивается вследствие невозможности распознавания медикаментами мишеней.

Инактивация антибактериального препарата происходит в результате нарушения фактора β-лактамного кольца. Основной механизм резистентности к аминогликозидам – ферментативная модификационная инактивация этого фактора. Плазмиды микробов содержат в своем составе гены, способные стимулировать ацетилирование либо фосфорилирование антибиотика. Вторичная лекарственная устойчивость микроорганизмов к антибактериальным лекарствам (цефалоспоринам и пенициллинам) связана синтезом бета-лактамаз – это ферментные вещества, которые разрушающе действуют на активность фактора β-лактамного кольца.

Выделяют 2 типа бета-лактамаз – цефалоспориназы и пенициллазы, однако каждый из них активен по отношению к антибиотикам обеих групп, так как направлен на область фактора β-лактамного кольца.

Активное освобождение микробной клетки от антибиотика осуществляется специальными транспортными системами цитоплазматической мембраны, и антибактериальные препараты не достигают цели.

Изменение проницаемости наружных структур для различных веществ определяется мутацией, в результате чего теряется способность к транспорту веществ через стенку бактерии. Образование метаболического «шунта» объясняется приобретением генов, которые позволяют образовывать «обходные» пути метаболизма для образования ферментов нечувствительных к антибиотикам.

Температура и ее влияние на микробы

Важную роль в жизнедеятельности бактерий имеет регуляция температуры, которая зависит от условий окружающей среды. Под действием температуры окружающей среды изменяется не только скорость протекания химических реакций, но и развивается перестройка структуры протеинов, воды, регулируется перемещение фазовых жиров.

Как правило, активность бактерий и их жизнедеятельность наиболее оптимальны при температуре 0-60°С. Нижняя граница жизненной температуры для бактерий обусловлена кристаллизацией воды при нулевом значении показателя температуры окружающей среды. Верхняя граница обусловлена разрушением белковых структур при воздействии высокой температуры. В зависимости от устойчивости к различной температуре окружающей среды различают следующие типы бактериальных клеток:

  1. Мезофильные – большая часть известных бактерий, оптимальные значения температуры для их жизнедеятельности составляют +3-50°С. Наиболее известный представитель – E. Coli.
  2. Психрофильные – рост таких микроорганизмов возможен при температуре от –10 до 20°С. Среди них выделяют облигатные (не растут при температуре 20°С и выше), факультативные (верхняя граница значений жизненной температуры может быть выше).
  3. Термофильные – подразделяются на несколько групп: термотолерантные – растут при температуре 10-60°С; факультативные – температуре от 40 до 70°С; экстремальные – температуре от 60 до 110°С.

Известны случаи обнаружения микроорганизмов при температуре воды 250-300°С. Существуют также эндотермные (образуют тепловую энергию сами) и эктотермные организмы, температура которых связана со значениями температуры окружающей среды.

Термоустойчивость (или терморезистентность) – свойство микроба, которое заключается в его способности сохранять свою жизнедеятельность во время продолжительного нагревания при температуре окружающей среды выше допустимого максимума для конкретного типа бактерии. Наиболее устойчивы к высокой температуре окружающей среды формы бактерий в виде спор.

Нормальные виды бактерий характеризуются наличием антагонистического действия. Такая активность препятствует разрушающему эффекту. Это относится к следующим факторам:

  • гуморальной системе,
  • клеточным факторам защиты.

Фагоцитоз – это механизм защиты бактериальной клетки от чужеродных объектов, который реализуется благодаря разным мутациям и фагоцитам. Данный процесс реализуется благодаря нейтрофилам (фагоцитам), которые выполняют защитные функции по отношению к чужеродным бактериям и веществам. К фагоцитам относятся макрофаги и микрофаги.

Фагоцитам свойственны три основные функции: защитная, секреторная, представляющая (отвечающая за иммунитет). Благодаря фагоцитам и соответствующим факторам среды образуется стойкий иммунитет против многих заболеваний.

Отдельное место отводится бактериофагам, которые представляют собой вирусы, избирательно повреждающие бактериальные клетки. К бактериофагам в медицине обращаются как к альтернативному методу лечения антибиотиками. Микробы, которые имеют устойчивость к антибиотикам, не имеют стойкости к бактериофагам. Особенно хорошо поддаются бактериофагам микробы, имеющие полисахаридную мембрану, которая защищает их от антибиотиков.

Аэробные спорообразующие микробы

Одними из наиболее устойчивых бактерий к различным факторам окружающей среды являются микроорганизмы, обладающие способностью к образованию спор. Способность бактерий к образованию спор широко применяется в промышленности для производства ферментов, органических кислот, антибиотиков и других веществ . Встречаются и патогенные для человека типы спор, такие как сибиреязвенная бацилла.

Образование спор некоторых бактерий является основной проблемой в консервном производстве, консервации крови, пищевых и сельскохозяйственных продуктов. Распространенность спор в природе довольно широка, так как такие бактерии обнаруживаются повсеместно. Способность к образованию спор – один из уникальных механизмов устойчивости микробов к различным повреждающим действиям окружающего мира.

Понятие лекарственной устойчивости

Осложнение химиотерапии со стороны микроорганизмов прояв­ляется развитием лекарственной устойчивости.

В настоящее время лекарственная устойчивость микроорга­низмов - возбудителей различных заболеваний - не только чисто микробиологическая, но и огромная государственная проблема (например, смертность детей от стафилококкового сепсиса находится в настоящее время примерно на том же вы­соком уровне, что и до появления антибиотиков). Это связано с тем, что среди стафилококков - возбудителей различных гнойно-воспалительных заболеваний - довольно часто выде­ляются штаммы, одновременно устойчивые ко многим препара­там (5-10 и более).

Среди микроорганизмов - возбудителей острых кишечных инфекций до 80% выделяемых возбудителей дизентерии устой­чивы ко многим используемым антибиотикам.

В основе развития лекарственной устойчивости к антибиоти­кам и другим химиотерапевтическим препаратам лежат мутации хромосомных генов или приобретение плазмид лекарственной устойчивости.

Существуют роды и семейства микроорганизмов, природно-устойчивыё к отдельным антибиотикам; в их геноме есть гены, контролирующие этот признак. Для рода ацинетобактер, на­пример, устойчивость к пенициллину является таксономиче­ским признаком. Полирезистентны к антибиотикам и многие представители псевдомонад, неклостридиальных анаэробов и другие микроорганизмы.

Такие бактерии являются природными банками (хранилища­ми) генов лекарственной устойчивости.

Как известно, мутации, в том числе по признаку лекарствен­ной устойчивости, спонтанны и возникают всегда. В период массового применения антибиотиков в медицине, ветеринарии и растениеводстве микроорганизмы практически живут в сре­де, содержащей антибиотики, которые становятся селективным фактором, способствующим отбору устойчивых мутантов, по­лучающим определенные преимущества.

Плазмидная устойчивость приобретается микробными клетка­ми в результате процессов генетического обмена. Сравнитель­но высокая частота передачи R-плазмид обеспечивает широкое и достаточно быстрое распространение устойчивых бактерий в популяции, а селективное давление антибиотиков - отбор и закрепление их в биоценозах.

Плазмидная устойчивость может быть множественной, т. е. к нескольким лекарственным препаратам, и при этом достигать достаточно высокого уровня.

Биохимическая основа резистентности

Биохимическую основу резистентности обеспечивают разные механизмы:

  • энзиматическая инактивация антибиотиков - осуществляется с помощью синтезируемых бактериями ферментов, разрушаю­щих активную часть антибиотиков. Одним из таких широко известных ферментов является бета-лактамаза, обеспечиваю­щая устойчивость микроорганизмов к бета-лактамным анти­биотикам за счет прямого расщепления бета-лактамного кольца этих препаратов. Другие ферменты способны не расщеплять, а модифицировать активную часть молекулы антибиотиков, как это имеет место при энзиматической инактивации аминогли-козидов и левомицетина;
  • изменение проницаемости клеточной стенки для антибиотика или подавление его транспорта в бактериальные клетки. Этот механизм лежит в основе устойчивости к тетрациклину,
  • изменение структуры компонентов микробной клетки, например изменение структуры бактериальных рибосом, сопровождается повышением устойчивости к аминогликозидам и макролидам, а изменение структуры РНК-синтетаз — к рифампицину.

У бактерий одного и того же вида могут реализовываться не­сколько механизмов резистентности.

В то же время развитие того или другого типа резистентности определяется не только свойствами бактерий, но и химической структурой антибиотика.

Так, цефалоспорины 1-го поколения устойчивы к действию стафило­кокковых бета-лактамаз, но разрушаются бета-лактамазами грамот-(рицательных микроорганизмов, тогда как цефалоспорины 4-го поко­ления и имипинемы высокоустойчивы к действию бета-лактамаз и 1грамположительных, и грамотрицательных микроорганизмов.

Борьба с лекарственной устойчивостью

Для борьбы с лекарственной устойчивостью, т. е. для преодоле­ния резистентности микроорганизмов к химиопрепаратам, cyществует несколько путей:

  • в первую очередь - соблюдение принципов рациональной химио­терапии;
  • создание новых химиотерапевтических средств, отличающихся механизмом антимикробного действия (например созданная в последнее время группа химиопрепаратов - фторхинолоны) и мишенями;
  • постоянная ротация (замена) используемых в данном лечебном учреждении или на определенной территории химиопрепара­тов (антибиотиков);
  • комбинированное применение бета-лактамных антибиотиков со­вместно с ингибиторами бета-лактамаз (клавулановая кислота, сульбактам, тазобактам).

Принципы рациональной химиотерапии, к сожалению, очень часто не соблюдаются, хотя достаточно просты и состоят в следующем:

  • химиотерапия должна назначаться строго по показаниям (т. е. только в тех случаях, когда без нее нельзя обойтись) и с уче­том противопоказаний (например повышенной чувствительно­сти или аллергической реакции к препаратам той или иной группы). Выбор препарата для химиотерапии может прово­диться в различных вариантах;
  • при этиологически расшифрованных заболеваниях выбор пре­парата должен определяться с учетом чувствительности возбу­дителя (антибиотикограмма), выделенного от данного кон­кретного больного в результате бактериологического исследо­вания;
  • при выделении возбудителя без определения его чувствитель­ности к химиопрепаратам или при эмпирической инициальной химиотерапии заболевания с неидентифицированным, но предполагаемым возбудителем выбор препарата для химиоте­рапии должен основываться на показателях антибиотикочув-ствительности соответствующих микроорганизмов - наиболее вероятных возбудителей данной нозологической формы забо­левания по данным литературы или при ориентации на данные о региональной чувствительности тех или иных инфекционных агентов - возбудителей данного заболевания;
  • лечение должно проводиться строго по схеме, рекомендованной для выбранного химиопрепарата (способ и кратность введения препарата, длительность лечения), а также с учетом коэффици­ента увеличения концентрации препарата в целях создания эф­фективных концентраций препарата непосредственно в орга­нах и тканях (примерно 4 МПК - минимальная подавляющая концентрация, определенная методом серийных разведений);
  • длительность приема химиопрепаратов должна составлять, как минимум, 4-5 дней в целях профилактики формирования ус­тойчивости возбудителя к данному препарату, а также форми­рования бактерионосительства (при дерматомикозе, кандидозе и трихомониазе влагалища с целью предупреждения рецидивов лечение продолжают в течение 2-4 недель после исчезновения симптомов заболевания);
  • химиотерапию желательно дополнить применением средств, способствующих повышению активности защитных механиз­мов макроорганизма - принцип иммунохимиотерапии;
  • весьма эффективны при проведении химиотерапии комбинации препаратов с различными механизмами и спектром действия (в настоящее время в гинекологической практике в России ши­роко используется для местного лечения вагинитов неясной этиологии препарат полижинакс, представляющий собой ком­бинацию неомицина, полимиксина и нистатина);
  • при эмпирической терапии, т. е. при неизвестной чувствитель­ности возбудителей, желательно комбинировать препараты с взаимодополняющим спектром действия - для расширения спек­тра действия фторхинолонов на анаэробы и простейшие во многих случаях рекомендуется их комбинация с метронидазо-лом (трихополом), обладающим бактерицидным действием по отношению к этим микроорганизмам.

При комбинированном применении препаратов необходимо учи­тывать несколько факторов:

  • лекарственную совместимость предполагаемых к совместному использованию химиопрепаратов. Например, совместное на­значение тетрациклинов с пенициллинами противопоказано, так как тетрациклины уменьшают бактерицидное действие пе-нициллинов;
  • возможность того, что препараты, содержащие одно и то же ве­щество в качестве активного действующего начала, могут носить различные торговые названия, так как выпускаются разными фирмами, и могут быть дженериками (препаратами, произво­димыми по лицензии с оригинала) одного и того же химиоп­репарата. Например, комбинированный препарат из сульфани­ламидов и триметоприма - котримоксазол - в странах СНГ больше известен как бисептол или бактрим; а один из фторхи­нолонов - ципрофлоксацин - известен в СНГ и широко при­меняется в практике как ципробай, цифран, квинтор, неоф-локсацин;
  • комбинированное применение антибиотиков повышает риск развития дисбаланса нормальной микрофлоры.

Лекарственная устойчивость микроорганизмов - способность микроорганизмов сохранять жизнедеятельность, включая размножение, несмотря на контакт с химиопрепаратами. Лекарственная устойчивость (резистентность) микроорганизмов отличается от их толерантности, при которой микробные клетки не гибнут в присутствии химиопрепаратов из-за уменьшенного количества аутолитических ферментов, но и не размножаются.- широко распространенное явление, препятствующее лечению инфекционных болезней. Наиболее изучена лекарственная устойчивость бактерий.

Различают лекарственную устойчивость, природно присущую микроорганизмам и возникшую в результате мутаций или приобретения чужеродных генов. Природная лекарственная устойчивость микроорганизмов обусловлена отсутствием в микробной клетке мишени для химиопрепаратов или непроницаемостью для них оболочки микробной клетки. Она свойственна, как правило, всем представителям данного вида (иногда рода) бактерий в отношении конкретной группы химиопрепаратов. Примерами могут служить устойчивость к пенициллину микоплазм из-за отсутствия у них клеточной стенки и ферментов ее синтеза - мишеней для пенициллина, а также устойчивость синегнойной палочки к эритромицину в связи с неспособностью последнего проникать через ее оболочку к своим мишеням-рибосомам.

Лекарственная устойчивость микроорганизмов как результат мутаций или приобретения чужеродных генов представителями видов, исходно чувствительных к конкретным химиопрепаратам, получила распространение вследствие создаваемого широко применяемыми препаратами селективного фона для выживания именно устойчивых форм бактерий. Так, частота обнаружения пенициллиноустойчивых стафилококков в некоторых регионах достигает 80-90%, стрептомициноустойчивых - 60-70%, шигелл, устойчивых к ампициллину, - 90%, устойчивых к тетрациклину и стрептомицину - более 50% и т.д.

В зависимости от локализации в хромосоме или плазмиде генов, обусловливающих устойчивость, принято различать Л.у.м хромосомного и плазмидного происхождения. Однако плазмидные гены могут быть включены в хромосому, хромосомные гены - обнаруживаться в репликоне плазмиды. Это связано с наличием транспозонов - генетических элементов, способных к переходу в клетке из одного репликона в другой.

Обмен генетическим материалом у бактерий путем конъюгации и трансдукции способствует быстрому распространению генов устойчивости между штаммами одного вида (реже рода). Селективный фон, создаваемый рядом постоянно применяемых антибиотиков, может приводить к включению в плазмиду нескольких генов устойчивости к различным химиопрепаратам. Благодаря этому возникают так называемые полирезистентные штаммы бактерий. В плазмидном репликоне может оказаться одновременно и несколько генов, обусловливающих устойчивость к одному антимикробному агенту, но за счет разных механизмов. Гены, с которыми связана устойчивость к определенному антимикробному агенту, могут иметь в одной клетке и хромосомную, и плазмидную локализацию, кодируя различные механизмы устойчивости.

Лекарственная устойчивость микроорганизмов нередко носит индуцибельный характер, т.е. экспрессия генов устойчивости происходит лишь после контакта клетки с антимикробным агентом. Примером этого являются частые случаи образования инактивирующего фермента после контакта культуры бактерий с бета-лактамным антибиотиком.

Лекарственная устойчивость микроорганизмов обусловлена следующими основными механизмами: ферментативной инактивацией антимикробного агента, ослаблением его проникновения внутрь клетки возбудителя, изменением конформации внутриклеточной мишени для антимикробного агента, что препятствует его взаимодействию с мишенью, образованием повышенного количества молекул мишени, на которую действует данный антимикробный агент.

В качестве инактивирующих ферментов известны представители гидролаз - бета-лактамазы, катализирующие расщепление бета-лактамного кольца у пенициллинов, цефалоспоринов и других бета-лактамов (монобактамов, карбапенемов и т.д.), а также эстеразы, воздействующие на эритромицин и некоторые другие антибиотики близкой к нему структуры. Другая группа инактивирующих ферментов - трансферазы. К ним принадлежат левомицетин- (хлорамфеникол-)-ацетилтрансферазы, аминогликозидацетил, фосфо- или аденилилтрансферазы и фосфотрансферазы, воздействующие на эритромицин.

Бета-лактамазы продуцируются многими грамположительными и грамотрицательными бактериями. Кодируются как хромосомными, так и плазмидными генами. Существует несколько систем классификации бета-лактамаз, основанных на их субстратной специфичности, чувствительности к ингибиторам, величине изоэлектрической точки и других показателях. Деление бета-лактамаз на пенициллиназы и цефалоспориназы во многом условно. Бета-лактамазы грамположительных бактерий, как правило, выделяются во внешнюю среду, грамотрицательных - содержатся в цитоплазматической мембране и периплазматическом пространстве (под внешней мембраной). В одной клетке могут присутствовать бета-лактамазы как хромосомного, так и плазмидного происхождения.

Трансферазы катализируют реакцию замещения функциональной группы антибиотика остатком уксусной, фосфорной или адениловой кислоты. При применении аминогликозидных антибиотиков описано замещение аминогрупп (N-ацеталирование) и гидроксильных групп (О-фосфорилирование и О-аденилирование). Один фермент воздействует, как правило, на одну функциональную группу. Описано также О-фосфорилирование хлорамфеникола и эритромицина. Подвергшиеся модификации антибиотики теряют активность. Трансферазы могут играть защитную роль только в присутствии АТФ (донора остатка фосфорной или адениловой кислоты) или коэнзима А (донора ацетильного остатка), поэтому их защитная роль при переходе во внешнюю среду теряется. В большинстве случаев они из клетки не выделяются.

Проницаемость оболочки бактериальной клетки к химиопрепаратам ослабевает в результате уменьшения количества белков-поринов и формируемых ими водных каналов во внешней мембране, через которые диффундируют препараты. Такой механизм Л.у.м может реализоваться по отношению к бета-лактамам, амино-гликозидам, фторхинолонам и др. Антимикробные агенты с выраженной гидрофобностью (некоторые из пенициллинов, фторхинолонов, тетрациклины и др.) проникают в клетку через липидные участки внешней мембраны. Изменения в структуре липидов могут влиять на Л.у.м Через цитоплазматическую мембрану некоторые антибиотики, например аминогликозиды, проникают с помощью энергозависимых специфических транспортных систем. При отсутствии функционирующих цитохромных систем электронного транспорта прекращается перенос в клетку аминогликозидов. Этим объясняется резкое падение активности аминогликозидов в анаэробных условиях и природная резистентность к ним анаэробов. С изменениями в оболочке клетки связан механизм тетрациклинорезистентности. За счет кодируемых хромосомными или плазмидными генами мембранных ТЕТ-белков в этом случае, как правило, происходит быстрое выведение проникших в клетку молекул тетрациклинов, которые не успевают прореагировать со своей мишенью - рибосомой.

Устойчивость к антибиотику ванкомицину связана с появлением в цитоплазматической мембране белков, экранирующих, т.е. делающих недоступной для него мишень - пептидные цепочки пептидогликана, с которыми во время сборки этого полимера реагирует ванкомицин. Изменение конформации мишени нередко наблюдается при устойчивости микроорганизмов к бета-лактамам, фторхинолонам и другим химиопрепаратам. Ферменты биосинтеза пептидогликана клеточной стенки бактерий - транспептадазы и Д 1 Д-карбоксипепти-дазы (так называемые пенициллинсвязывающие белки) прекращают при изменении конформации связывать бета-лактамы, а ДНК-гираза (мишень для фторхинолонов) перестает реагировать с этими химиопрепаратами. Устойчивость к аминогликозидам может быть обусловлена уменьшением их связывания с рибосомами в результате изменения конформации отдельных рибосомных белков. Устойчивость к эритромицину на уровне его мишени (рибосом) обусловлена специфическим метилированием рибосомной РНК в большой рибосомной субъединице. Это приводит к предотвращению реагирования эритромицина с рибосомами. Повышенное количество молекул мишени в клетке и как результат устойчивость к антимикробному агенту наблюдались при устойчивости к триметоприму, обусловленной усиленным образованием редуктазы фолиевой кислоты. Селекции и широкому распространению устойчивых к антибиотикам бактерий способствуют нерациональное необоснованное применение антибиотиков.

Устойчивость микроорганизмов может быть связана с фазой роста возбудителей в очаге воспаления, когда их количество достигает 10 8 - 10 9 особей в 1 мл гомогенизированной пробы исследуемого материала. В этой фазе прекращается рост микробных клеток, и возбудитель становится индифферентным или менее чувствительным к ингибирующему влиянию многих антимикробных препаратов. Известные затруднения в химиотерапии вызывают L-формы бактерий, чувствительность которых отличается от чувствительности исходных бактерий с нормальной клеточной стенкой. Возбудители могут быть устойчивыми к антимикробным препаратам в случаях их ассоциаций с бактериями, инактивирующими эти препараты. На активность антибиотиков влияют также значение рН среды, степень анаэробиоза, наличие инородных тел, состояние факторов неспецифической резистентности и иммунитета, межлекарственный антагонизм.

Механизмы лекарственной устойчивости грибков и простейших имеют особенности, связанные со структурной организацией и химическим составом их клеток. Отмечено, что устойчивость грибков к полиенам (нистатин, амфотерицин В, леворин и др.), реагирующим со стеринами цитоплазматической мембраны, несколько повышается при уменьшении количества стеринов в мембране или в результате изменений в молекулярной организации мембраны, приводящих к уменьшению контакта полисное со стеринами.

Лекарственная устойчивость вирусов изучена слабо. Показано, что при применении как противовирусных агентов нуклеозидов устойчивость может быть связана с мутациями в генах вирусной тимидинкиназы или ДНК-полимерами. Т.о может возникать устойчивость к идоксуридину при кератитах, вызванных вирусами простого герпеса. У мутантов вируса простого герпеса. устойчивых к видарабину, изменен локус гена ДНК-полимеразы.

К выводу о чувствительности или устойчивости микроорганизмов приходят на основании определения величины зоны подавления их роста на плотной питательной среде вокруг дисков, пропитанных антимикробными препаратами (дискодиффузионный метод). Применяют также метод серийных разведений антимикробных препаратов в плотных и жидких питательных средах (см. Микробиологическая диагностика ) Активность противовирусных препаратов определяется с помощью методов культивирования вирусов на культуре клеток. куриных эмбрионах или лабораторных животных.

Преодоление Л.у.м достигается различными путями: введением так называемых ударных доз антимикробных препаратов, способных подавлять рост относительно устойчивых к ним микроорганизмов, продолжением лечения с использованием достаточно высоких доз препаратов и соблюдение рекомендованной схемы. Смена антибиотиков, применяемых в клинике, комбинированная химиотерапия оказываются весьма эффективными в борьбе с лекарственно-устойчивыми микроорганизмами. Но, например, при сочетании бактериостатического антибиотика с бактерицидным (левомицетина с пенициллином) возможен межлекарственный антагонизм, приводящий к ослаблению антимикробного эффекта. Для защиты бета-лактамных антибиотиков от бета-лактамаз бактерий используют ингибиторы этих ферментов - клавулановую кислоту, сульбактам (сульфон пенициллановой кислоты) и др. Открытие клавулановой кислоты, содержащей бета-лактамное кольцо и блокирующей ряд бета-лактамаз, стимулировало поиск разнообразных ингибиторов ферментов (аналогов субстратов), что позволяет значительно расширить применение антибиотиков, чувствительных к инактивирующим их ферментам. Ведется также поиск новых природных антибиотиков, химическая модификация уже известных антибиотиков с целью получения антимикробных веществ, эффективных против бактерий, устойчивых к уже применяемым препаратам.

Систематическое выявление лекарственно-устойчивых микроорганизмов и своевременная информация о циркулирующих в данных регионах фенотипах лекарственной устойчивости позволяют ориентировать врача на применение наиболее подходящего по спектру действия препарата и наиболее благоприятных комбинаций лекарственных препаратов, разумеется с учетом их возможной несовместимости (см. Несовместимость лекарственных средств ).

В качестве стимуляторов роста с.-х. животных, в ветеринарии, растениеводстве целесообразно не применять антибиотики, используемые в клинике и вызывающие перекрестную резистентность к антибиотикам медицинского назначения.

Библиогр.: Бриан Л.Е. Бактериальная резистентность и чувствительность к химиопрепаратам, пер. с англ., М., 1984; Ланчини Д. и Паренти Ф. Антибиотики, пер. с англ., с. 89. М., 1985; Навашин С.М. и Фомина И.П. Рациональная антибиотикотерапия, с. 25, М., 1982; Франклин Т. и Сноу Дж. Биохимия антимикробного действия, пер с англ., с. 197, М., 1984.


Сокращения: Л. у. м. - Лекарственная устойчивость микроорганизмов

Внимание! Статья "Лекарственная устойчивость микроорганизмов " приведена исключительно в ознакомительных целях и не должна применяться для самолечения

способность микроорганизмов сохранять жизнедеятельность, включая размножение, несмотря на контакт с химиопрепаратами. Лекарственная устойчивость (резистентность) микроорганизмов отличается от их толерантности, при которой микробные клетки не гибнут в присутствии химиопрепаратов из-за уменьшенного количества аутолитических ферментов, но и не размножаются. Л.у.м. - широко распространенное явление, препятствующее лечению инфекционных болезней. Наиболее изучена лекарственная устойчивость бактерий.

Различают лекарственную устойчивость, природно присущую микроорганизмам и возникшую в результате мутаций или приобретения чужеродных генов. Природная Л.у.м. обусловлена отсутствием в микробной клетке мишени для химиопрепаратов или непроницаемостью для них оболочки микробной клетки. Она свойственна, как правило, всем представителям данного вида (иногда рода) бактерий в отношении конкретной группы химиопрепаратов. Примерами могут служить устойчивость к пенициллину микоплазм из-за отсутствия у них клеточной стенки и ферментов ее синтеза - мишеней для пенициллина, а также устойчивость синегнойной палочки к эритромицину в связи с неспособностью последнего проникать через ее оболочку к своим мишеням-рибосомам.

Лекарственная устойчивость микроорганизмов как результат мутаций или приобретения чужеродных генов представителями видов, исходно чувствительных к конкретным химиопрепаратам, получила распространение вследствие создаваемого широко применяемыми препаратами селективного фона для выживания именно устойчивых форм бактерий. Так, частота обнаружения пенициллиноустойчивых стафилококков в некоторых регионах достигает 80-90%, стрептомициноустойчивых - 60-70%, шигелл, устойчивых к ампициллину, - 90%, устойчивых к тетрациклину и стрептомицину - более 50% и т.д.

В зависимости от локализации в хромосоме или плазмиде генов, обусловливающих устойчивость, принято различать Л.у.м хромосомного и плазмидного происхождения. Однако плазмидные гены могут быть включены в хромосому, хромосомные гены - обнаруживаться в репликоне плазмиды. Это связано с наличием транспозонов - генетических элементов, способных к переходу в клетке из одного репликона в другой.

Обмен генетическим материалом у бактерий путем конъюгации и трансдукции способствует быстрому распространению генов устойчивости между штаммами одного вида (реже рода). Селективный фон, создаваемый рядом постоянно применяемых антибиотиков, может приводить к включению в плазмиду нескольких генов устойчивости к различным химиопрепаратам. Благодаря этому возникают так называемые полирезистентные штаммы бактерий. В плазмидном репликоне может оказаться одновременно и несколько генов, обусловливающих устойчивость к одному антимикробному агенту, но за счет разных механизмов. Гены, с которыми связана устойчивость к определенному антимикробному агенту, могут иметь в одной клетке и хромосомную, и плазмидную локализацию, кодируя различные механизмы устойчивости.

Лекарственная устойчивость микроорганизмов нередко носит индуцибельный характер, т.е. экспрессия генов устойчивости происходит лишь после контакта клетки с антимикробным агентом. Примером этого являются частые случаи образования инактивирующего фермента после контакта культуры бактерий с бета-лактамным антибиотиком.

Лекарственная устойчивость микроорганизмов обусловлена следующими основными механизмами: ферментативной инактивацией антимикробного агента, ослаблением его проникновения внутрь клетки возбудителя, изменением конформации внутриклеточной мишени для антимикробного агента, что препятствует его взаимодействию с мишенью, образованием повышенного количества молекул мишени, на которую действует данный антимикробный агент.

В качестве инактивирующих ферментов известны представители гидролаз - бета-лактамазы, катализирующие расщепление бета-лактамного кольца у пенициллинов, цефалоспоринов и других бета-лактамов (монобактамов, карбапенемов и т.д.), а также эстеразы, воздействующие на эритромицин и некоторые другие антибиотики близкой к нему структуры. Другая группа инактивирующих ферментов - трансферазы. К ним принадлежат левомицетин- (хлорамфеникол-)-ацетилтрансферазы, аминогликозидацетил, фосфо- или аденилилтрансферазы и фосфотрансферазы, воздействующие на эритромицин.

Бета-лактамазы продуцируются многими грамположительными и грамотрицательными бактериями. Кодируются как хромосомными, так и плазмидными генами. Существует несколько систем классификации бета-лактамаз, основанных на их субстратной специфичности, чувствительности к ингибиторам, величине изоэлектрической точки и других показателях. Деление бета-лактамаз на пенициллиназы и цефалоспориназы во многом условно. Бета-лактамазы грамположительных бактерий, как правило, выделяются во внешнюю среду, грамотрицательных - содержатся в цитоплазматической мембране и периплазматическом пространстве (под внешней мембраной). В одной клетке могут присутствовать бета-лактамазы как хромосомного, так и плазмидного происхождения.

Трансферазы катализируют реакцию замещения функциональной группы антибиотика остатком уксусной, фосфорной или адениловой кислоты. При применении аминогликозидных антибиотиков описано замещение аминогрупп (N-ацеталирование) и гидроксильных групп (О-фосфорилирование и О-аденилирование). Один фермент воздействует, как правило, на одну функциональную группу. Описано также О-фосфорилирование хлорамфеникола и эритромицина. Подвергшиеся модификации антибиотики теряют активность. Трансферазы могут играть защитную роль только в присутствии АТФ (донора остатка фосфорной или адениловой кислоты) или коэнзима А (донора ацетильного остатка), поэтому их защитная роль при переходе во внешнюю среду теряется. В большинстве случаев они из клетки не выделяются.

Проницаемость оболочки бактериальной клетки к химиопрепаратам ослабевает в результате уменьшения количества белков-поринов и формируемых ими водных каналов во внешней мембране, через которые диффундируют препараты. Такой механизм Л.у.м может реализоваться по отношению к бета-лактамам, амино-гликозидам, фторхинолонам и др. Антимикробные агенты с выраженной гидрофобностью (некоторые из пенициллинов, фторхинолонов, тетрациклины и др.) проникают в клетку через липидные участки внешней мембраны. Изменения в структуре липидов могут влиять на Л.у.м Через цитоплазматическую мембрану некоторые антибиотики, например аминогликозиды, проникают с помощью энергозависимых специфических транспортных систем. При отсутствии функционирующих цитохромных систем электронного транспорта прекращается перенос в клетку аминогликозидов. Этим объясняется резкое падение активности аминогликозидов в анаэробных условиях и природная резистентность к ним анаэробов. С изменениями в оболочке клетки связан механизм тетрациклинорезистентности. За счет кодируемых хромосомными или плазмидными генами мембранных ТЕТ-белков в этом случае, как правило, происходит быстрое выведение проникших в клетку молекул тетрациклинов, которые не успевают прореагировать со своей мишенью - рибосомой.

Устойчивость к антибиотику ванкомицину связана с появлением в цитоплазматической мембране белков, экранирующих, т.е. делающих недоступной для него мишень - пептидные цепочки пептидогликана, с которыми во время сборки этого полимера реагирует ванкомицин. Изменение конформации мишени нередко наблюдается при устойчивости микроорганизмов к бета-лактамам, фторхинолонам и другим химиопрепаратам. Ферменты биосинтеза пептидогликана клеточной стенки бактерий - транспептадазы и Д 1 Д-карбоксипепти-дазы (так называемые пенициллинсвязывающие белки) прекращают при изменении конформации связывать бета-лактамы, а ДНК-гираза (мишень для фторхинолонов) перестает реагировать с этими химиопрепаратами. Устойчивость к аминогликозидам может быть обусловлена уменьшением их связывания с рибосомами в результате изменения конформации отдельных рибосомных белков. Устойчивость к эритромицину на уровне его мишени (рибосом) обусловлена специфическим метилированием рибосомной РНК в большой рибосомной субъединице. Это приводит к предотвращению реагирования эритромицина с рибосомами. Повышенное количество молекул мишени в клетке и как результат устойчивость к антимикробному агенту наблюдались при устойчивости к триметоприму, обусловленной усиленным образованием редуктазы фолиевой кислоты. Селекции и широкому распространению устойчивых к антибиотикам бактерий способствуют нерациональное необоснованное применение антибиотиков.

Устойчивость микроорганизмов может быть связана с фазой роста возбудителей в очаге воспаления, когда их количество достигает 10 8 - 10 9 особей в 1 мл гомогенизированной пробы исследуемого материала. В этой фазе прекращается рост микробных клеток, и возбудитель становится индифферентным или менее чувствительным к ингибирующему влиянию многих антимикробных препаратов. Известные затруднения в химиотерапии вызывают L-формы бактерий, чувствительность которых отличается от чувствительности исходных бактерий с нормальной клеточной стенкой. Возбудители могут быть устойчивыми к антимикробным препаратам в случаях их ассоциаций с бактериями, инактивирующими эти препараты. На активность антибиотиков влияют также значение рН среды, степень анаэробиоза, наличие инородных тел, состояние факторов неспецифической резистентности и иммунитета, межлекарственный антагонизм.

Механизмы лекарственной устойчивости грибков и простейших имеют особенности, связанные со структурной организацией и химическим составом их клеток. Отмечено, что устойчивость грибков к полиенам (нистатин, амфотерицин В, леворин и др.), реагирующим со стеринами цитоплазматической мембраны, несколько повышается при уменьшении количества стеринов в мембране или в результате изменений в молекулярной организации мембраны, приводящих к уменьшению контакта полисное со стеринами.

Лекарственная устойчивость вирусов изучена слабо. Показано, что при применении как противовирусных агентов нуклеозидов устойчивость может быть связана с мутациями в генах вирусной тимидинкиназы или ДНК-полимерами. Т.о может возникать устойчивость к идоксуридину при кератитах, вызванных вирусами простого герпеса. У мутантов вируса простого герпеса. устойчивых к видарабину, изменен локус гена ДНК-полимеразы.

К выводу о чувствительности или устойчивости микроорганизмов приходят на основании определения величины зоны подавления их роста на плотной питательной среде вокруг дисков, пропитанных антимикробными препаратами (дискодиффузионный метод). Применяют также метод серийных разведений антимикробных препаратов в плотных и жидких питательных средах (см. Микробиологическая диагностика) Активность противовирусных препаратов определяется с помощью методов культивирования вирусов на культуре клеток. куриных эмбрионах или лабораторных животных.

Преодоление Л.у.м достигается различными путями: введением так называемых ударных доз антимикробных препаратов, способных подавлять рост относительно устойчивых к ним микроорганизмов, продолжением лечения с использованием достаточно высоких доз препаратов и соблюдение рекомендованной схемы. Смена антибиотиков, применяемых в клинике, комбинированная химиотерапия оказываются весьма эффективными в борьбе с лекарственно-устойчивыми микроорганизмами. Но, например, при сочетании бактериостатического антибиотика с бактерицидным (левомицетина с пенициллином) возможен межлекарственный антагонизм, приводящий к ослаблению антимикробного эффекта. Для защиты бета-лактамных антибиотиков от бета-лактамаз бактерий используют ингибиторы этих ферментов - клавулановую кислоту, сульбактам (сульфон пенициллановой кислоты) и др. Открытие клавулановой кислоты, содержащей бета-лактамное кольцо и блокирующей ряд бета-лактамаз, стимулировало поиск разнообразных ингибиторов ферментов (аналогов субстратов), что позволяет значительно расширить применение антибиотиков, чувствительных к инактивирующим их ферментам. Ведется также поиск новых природных антибиотиков, химическая модификация уже известных антибиотиков с целью получения антимикробных веществ, эффективных против бактерий, устойчивых к уже применяемым препаратам.

Систематическое выявление лекарственно-устойчивых микроорганизмов и своевременная информация о циркулирующих в данных регионах фенотипах лекарственной устойчивости позволяют ориентировать врача на применение наиболее подходящего по спектру действия препарата и наиболее благоприятных комбинаций лекарственных препаратов, разумеется с учетом их возможной несовместимости (см. Несовместимость лекарственных средств).

В качестве стимуляторов роста с.-х. животных, в ветеринарии, растениеводстве целесообразно не применять антибиотики, используемые в клинике и вызывающие перекрестную резистентность к антибиотикам медицинского назначения.

Библиогр.: Бриан Л.Е. Бактериальная резистентность и чувствительность к химиопрепаратам, пер. с англ., М., 1984; Ланчини Д. и Паренти Ф. Антибиотики, пер. с англ., с. 89. М., 1985; Навашин С.М. и Фомина И.П. Рациональная антибиотикотерапия, с. 25, М., 1982; Франклин Т. и Сноу Дж. Биохимия антимикробного действия, пер с англ., с. 197, М., 1984.

  • - гемоглобинурия, обусловленная приемом некоторых лекарств; чаще наблюдается при недостаточности глюкозо-6-фосфат-дегидрогеназы эритроцитов...

    Медицинская энциклопедия

  • - определение принадлежности микроорганизмов к определенному виду, роду и т.д., основанное на изучении комплекса их биологических признаков...

    Медицинская энциклопедия

  • - свойство системы возвращаться к исходному состоянию после прекращения воздействия, которое вывело ее из этого состояния...

    Медицинская энциклопедия

  • - показатель функционального состояния ц.н.с., представляющий собой отношение суммарной продолжительности периодов раздельного видения двух точек в условиях пороговой величины угла их различения ко всему...

    Медицинская энциклопедия

  • - комплекс мероприятий, направленных на обнаружение в объектах окружающей среды бактерий, риккетсий, вирусов и грибков, патогенных для людей и животных...

    Медицинская энциклопедия

  • - индивидуальная повышенная чувствительность к лекарственному средству, проявляющаяся в том, что оно в терапевтических или меньших дозах вызывает нежелательные реакции организма...

    Медицинская энциклопедия

  • - полимерная эластичная пластинка, содержащая лекарственное средство; закладывается в конъюнктивальный мешок, где рассасывается и обеспечивает пролонгированное действие лекарственного средства...

    Медицинская энциклопедия

  • - предписание, регламентирующее состав изготавливаемого лекарственного средства. магистра́льная - см. Лекарственная пропись рецептурная...

    Медицинская энциклопедия

  • - природная или приобретенная способность возбудителя болезни сохранять жизнедеятельность при воздействии на него лекарственных средств...

    Медицинская энциклопедия

  • - придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при к-ром достигается необходимый лечебный эффект...

    Медицинская энциклопедия

  • - избирательная локализация микробов в определенных клетках или тканях...

    Медицинская энциклопедия

  • - эозинофильный лейкоцитоз, развивающийся при применении лекарственных средств белковой природы, например антибиотиков, препаратов печени, противостолбнячной сыворотки...

    Медицинская энциклопедия

  • - и, ж. Свойство по знач. прил. устойчивый. Устойчивость самолета. Устойчивость сооружения. Устойчивость театрального репертуара...

    Малый академический словарь

  • - ...

    Русское словесное ударение

"Лека́рственная усто́йчивость микрооргани́змов" в книгах

…И даже плёнка творила чертовщину

Из книги Роли, которые принесли несчастья своим создателям. Совпадения, предсказания, мистика?! автора Казаков Алексей Викторович

…И даже плёнка творила чертовщину Американская картина 1973 года «Изгоняющий дьявола» принесла трагедии и драмы в судьбы участников съёмочной группыОдин из самых известных фильмов, отмеченных печатью мистики и чередой драматических и трагических событий, связанных с

Пленка для спутника-шпиона

Из книги Операция «Турнир». Записки чернорабочего разведки автора Максимов Анатолий Борисович

Пленка для спутника-шпиона Середина семидесятых годов была ознаменована потеплением в отношениях между СССР и США. На самом «верху» было принято решение о начале широкомасштабного торгово-экономического сотрудничества с американцами. Внешторгу дано указание

Мономолекулярная масляная пленка

Из книги Американские ученые и изобретатели автора Уилсон Митчел

Мономолекулярная масляная пленка «Я начал работать в лаборатории „Дженерал Электрик“ в 1909 году над явлением высокого вакуума в лампах с вольфрамовой нитью и стал вводить в баллон лампы различные газы, чтобы увидеть, что произойдет, просто ради удовлетворения своего

Маска-пленка с активированным углем

Из книги Косметика и мыло ручной работы автора Згурская Мария Павловна

Маска-пленка с активированным углем Измельчаем 1/2 таблетки активированного угля. К нему добавляем 1/2 ч. л. желатина и 1 ч. л. молока. Эту смесь тщательно перемешиваем и ставим на водяную баню до полного растворения или в микроволновку на 10 секунд на самую минимальную

Тонкая пленка

Из книги автора

Тонкая пленка Несмотря на смещение центра тяжести индустрии солнечных батарей на восток, в Китай, одним из крупнейших в мире производителей фотопреобразователей является американская компания First Solar, базирующаяся в штате Аризона. Основным ее инвестором поначалу, в

Поверхностная пленка

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Поверхностная пленка Опыты, о которых мы сейчас рассказали, научили нас тому, что жидкость словно одета тонкой упругой пленкой, которою она поддерживает на воде и стальную иглу, и бегающую водомерку. Попытаемся понять теперь, что же это за пленка. Рис. 48. Частица жидкости

Пленка

Из книги Путешествие в удивительный мир [Макросъемка] автора Из книги Большая Советская Энциклопедия (ФЕ) автора БСЭ

НЕГАТИВНАЯ ПЛЕНКА

Из книги Фотосъемка. Универсальный самоучитель автора Кораблев Дмитрий

НЕГАТИВНАЯ ПЛЕНКА Проявленная негативная пленка по своей сути, является промежуточным этапом между съемкой и печатью готовых фотографий. Иногда она используется как конечный продукт в фотожурналистике, когда пленка сканируется, и фотографии сразу идут в печать газеты

1. Святогор и Пленка.

Из книги Книга Коляды автора Асов Александр Игоревич

1. Святогор и Пленка. Святогор был рожден Родом в начале времен, дабы охранять путь в Новь ко столбу, который поддерживает небесный свод. От Макоши он узнал, что ему суждено жениться на чудовище, которое живет за морем. Опечалившись от такой вести, Святогор отправился к

Плёнка с фонограммой, хр. 0.30

Из книги Соборный двор автора Щипков Александр Владимирович

Плёнка с фонограммой, хр. 0.30 (Интервью на улице. Прохожие говорят, что не верят

Никотиновая пленка

Из книги Я больше не курю! автора Уэстол Роберт

Никотиновая пленка Никотиновая пленка представляет собой тонкую полоску, которая полностью растворяется во рту. Как и в случае с леденцами и жевательной резинкой, никотин поступает в организм через слизистую оболочку рта. Преимущество пленки состоит в том, что она

ОБЩИЕ ЗАКОНОМЕРНОСТИ

Основой терапевтического действия антибактериальных препаратов является подавление жизнедеятельности возбудителя инфекционной болезни в результате угнетения более или менее специфичного для микроорганизмов метаболического процесса. Угнетение происходит в результате связывания антибиотика с мишенью, в качестве которой может выступать либо фермент, либо структурная молекула микроорганизма.

Резистентность микроорганизмов к антибиотикам может быть природной и приобретенной.

  • Истинная природная устойчивость характеризуется отсутствием у микроорганизмов мишени действия антибиотика или недоступности мишени вследствие первично низкой проницаемости или ферментативной инактивации. При наличии у бактерий природной устойчивости антибиотики клинически неэффективны. Природная резистентность является постоянным видовым признаком микроорганизмов и легко прогнозируется.
  • Под приобретенной устойчивостью понимают свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Возможны ситуации, когда большая часть микробной популяции проявляет приобретенную устойчивость. Появление у бактерий приобретенной резистентности не обязательно сопровождается снижением клинической эффективности антибиотика. Формирование резистентности во всех случаях обусловлено генетически: приобретением новой генетической информации или изменением уровня экспрессии собственных генов.

Известны следующие биохимические механизмы устойчивости бактерий к антибиотикам:

  1. Модификация мишени действия.
  2. Инактивация антибиотика.
  3. Активное выведение антибиотика из микробной клетки (эффлюкс).
  4. Нарушение проницаемости внешних структур микробной клетки.
  5. Формирование метаболического "шунта".

МЕХАНИЗМЫ УСТОЙЧИВОСТИ К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ ОТДЕЛЬНЫХ ГРУПП

β-лактамные антибиотики

Ферментативная инактивация . Наиболее распространенным механизмом устойчивости микроорганизмов к β-лактамам является их ферментативная инактивация в результате гидролиза одной из связей β-лактамного кольца ферментами β-лактамазами . К настоящему времени описано более 200 ферментов, различающихся по следующим практически важным свойствам:

  • Субстратный профиль (способность к преимущественному гидролизу тех или иных β-лактамов, например пенициллинов или цефалоспоринов , или тех и других в равной степени).
  • Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной - наблюдают распространение резистентного клона.
  • Чувствительность к применяющимся в медицинской практике ингибиторам : клавулановой кислоте, сульбактаму и тазобактаму.
Таблица 1. Наиболее распространенные β-лактамазы и их свойства
Ферменты Характеристика
Плазмидные β-лактамазы класса А стафилококков Гидролизуют кроме метициллина и оксациллина
Плазмидные β-лактамазы широкого спектра класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I поколения . Чувствительны к ингибиторам.
Плазмидные β-лактамазы расширенного спектра класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-IV поколения . Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса С грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-III поколения
Хромосомные β-лактамазы класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-II поколения . Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса В грамотрицательных бактерий Эффективно гидролизуют практически все β-лактамы, включая карбапенемы . Не чувствительны к ингибиторам.
Плазмидные β-лактамазы класса D грамотрицательных бактерий (преимущественно P.aeruginosa ) Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-II поколения . Многие способны также гидролизовать цефалоспорины III поколения . Большинство не чувствительны к ингибиторам.

К наиболее распространенным ферментам относятся стафилококковые β-лактамазы (встречаются у 60-80% штаммов) и β-лактамазы широкого спектра грамотрицательных бактерий (среди штаммов E.coli встречаются в 30-40% случаев). Несмотря на широкое распространение перечисленных ферментов, они не представляют серьезной проблемы для терапии, поскольку многие современные β-лактамы (цефалоспорины II-IV поколений , ингибиторозащищенные пенициллины , карбапенемы) не чувствительны к гидролизу.

В настоящее время наибольшее значение для клинической практики имеют плазмидные БЛРС грамотрицательных бактерий, поскольку они способны разрушать цефалоспорины III и, в меньшей степени, IV поколения . Рутинные методы оценки антибиотикочувствительности очень часто не выявляют этот механизм устойчивости. Чаще всего БЛРС встречаются у микроорганизмов рода Klebsiella , достаточно часто у E.coli и Proteus spp., реже у других грамотрицательных бактерий. В России в отдельных учреждениях частота распространенности этих ферментов среди клебсиелл достигает 90%.

Модификация мишени действия . Мишенями действия β-лактамов являются ферменты - ПСБ , участвующие в синтезе клеточной стенки бактерий. В результате модификации у некоторых ПСБ уменьшается сродство к β-лактамам, что проявляется в повышении МПК этих препаратов и снижении клинической эффективности. Реальное клиническое значение имеет устойчивость среди стафилококков и пневмококков. Гены модифицированных ПСБ локализованы на хромосомах.

  • Устойчивость стафилококков (S.aureus и КНС) обусловлена появлением у микроорганизмов дополнительного ПСБ (ПСБ2а).
    • Маркером наличия ПСБ2а является устойчивость к метициллину или оксациллину .
    • Независимо от результатов оценки in vitro при инфекциях, вызываемых MRSA , все β-лактамы следует считать клинически неэффективными и не использовать в терапии.
    • Частота распространения MRSA в некоторых отделениях реанимации, онкологии и гематологии в России превышает 50-60%, что создает крайне серьезные проблемы для терапии.
  • Устойчивость пневмококков обусловлена появлением в генах, кодирующих ПСБ , чужеродной ДНК, происхождение которой связывают с зеленящими стрептококками. При этом перекрестная устойчивость между отдельными β-лактамами неполная. Значительная часть штаммов, устойчивых к пенициллину , сохраняет чувствительность к цефалоспоринам III поколения и карбапенемам . К настоящему времени накоплено значительное количество данных, свидетельствующих о сохранении клинической эффективности β-лактамов при инфекциях ДП, вызываемых штаммами с промежуточным уровнем устойчивости, однако при инфекциях ЦНС (менингитах) эффективность этих антибиотиков явно снижается. Накопленные данные послужили основанием для пересмотра критериев чувствительности пневмококков к амоксициллину , обсуждается целесообразность изменения критериев чувствительности к пенициллину .
  • Данные о частоте распространения в России пенициллинорезистентных пневмококков ограничены. В Москве, в период с 1998 г. по 2001 г., частота встречаемости штаммов пневмококков со сниженной чувствительностью к пенициллину колебалась в пределах 10-22%. При этом высокий уровень устойчивости отмечали не более чем у 1-2% штаммов.
  • Среди грамотрицательных бактерий устойчивость, связанная с модификацией ПСБ встречается редко. Определенное значение этот механизм устойчивости имеет у H.influenzae и N.gonorrhoeae . Микроорганизмы, проявляют устойчивость не только к , но и к ингибиторозащищенным препаратам .

Аминогликозиды

Ферментативная инактивация. Основным механизмом устойчивости к аминогликозидам является их ферментативная инактивация путем модификации. Модифицированные молекулы аминогликозидов теряют способность связываться с рибосомами и подавлять биосинтез белка. Описаны три группы АМФ , осуществляющих инактивацию аминогликозидов , путем их связывания с различными молекулами: ААС - присоединяющие молекулу уксусной кислоты, АРН - присоединяющие молекулу фосфорной кислоты, нуклеотидил- или ANT - присоединяющие молекулу нуклеотида аденина.

Таблица 2. Характеристика наиболее распространенных АМФ

На практике среди грамотрицательных бактерий могут встречаться практически все комбинации устойчивости к отдельным аминогликозидам . Это связано с разнообразием субстратных профилей отдельных ферментов и возможностью наличия у бактерии одновременно нескольких генов АМФ .

Для России характерна высокая частота распространения устойчивости среди грамотрицательных бактерий к гентамицину и тобрамицину , что, вероятно, связано с необоснованно широким применением гентамицина . Частота устойчивости к нетилмицину , как правило, несколько ниже. Устойчивость к амикацину встречается достаточно редко.

У ряда микроорганизмов (S. pneumoniae , Mycobacterium spp., Brachyspira hyodysenteriae , Propionibacterium spp., B. pertussis , H. influenzae , H. pylori ) известен и другой механизм модификации мишени для макролидов и линкозамидов - в результате мутаций в V домене 23S рРНК снижается сродство к антибиотикам и формируется клинически значимая устойчивость. При этом механизме наблюдают перекрестную резистентность ко всем макролидам и линкозамидам макролидам /линкозамидам штаммов S. pneumoniae , S. pyogenes и S. oralis вызывают также мутации в генах рибосомальных белков L4 и L22.

Активное выведение. Активное выведение макролидов и линкозамидов осуществляют несколько транспортных систем. Основное клиническое значение имеет система выведения, кодируемая mef -геном, распространенная среди S.pneumoniae , S.pyogenes и многих других грамположительных бактерий. Соответствующий белок-транспортер выводит 14- и 15-членные макролиды и обеспечивает невысокий уровень резистентности (МПК от 1 до 32 мг/л). Линкозамиды и 16-членые макролиды сохраняют активность.

Гены mef локализованы на хромосомах в составе конъюгативных элементов, что обеспечивает достаточно эффективное внутри- и межвидовое распространение. У стафилококков и энтерококков активное выведение макролидов , но не линкозамидов , осуществляют транспортные системы другого типа, кодируемые генами msr . Существуют также транспортные системы, осуществляющие избирательное выведение некоторых препаратов, например, линкомицина или олеандомицина.

Ферментативная инактивация. Ферменты, инактивирующие макролиды и линкозамиды , описаны среди грамположительных и грамотрицательных микроорганизмов. Некоторые из них обладают широким субстратным профилем (макролидфосфотрансферазы E.coli и Staphylococcus spp.), другие инактивируют только отдельные антибиотики (эритромицинэстеразы, распространенные среди семейства Enterobacteriaceae , линкомицинацетилтрансферазы стафилококков и энтерококков). Клиническое значение ферментов, инактивирующих макролидные антибиотики , невелико.

Роль отдельных механизмов резистентности к макролидам не равноценна. Накапливаются данные о том, что при инфекциях, вызываемых S. pneumoniae и S. pyogenes с устойчивостью, обусловленной активным выведением, некоторые макролиды могут сохранять клиническую эффективность.

Устойчивость энтерококков к гликопептидам является серьезной проблемой в ОРИТ в США и Западной Европе. Чаще всего устойчивость отмечают у штаммов E.faecium , ее частота может достигать 15-20%. Достоверных данных о выделении VRE в России нет.

Сообщения о выделении единичных штаммов метициллинорезистентных и метициллиночувствительных S.aureus со сниженной чувствительностью к ванкомицину (GISA) начали появляться в различных странах с 1997г.. Для штаммов со сниженной чувствительностью характерно утолщение клеточной стенки, уменьшение аутолитической активности. Обсуждается возможность избыточной продукции мишеней действия гликопептидов . Снижение чувствительности к гликопептидам было описано ранее среди КНС .

На практике при выделении ванкомицинорезистентных энтерококков и стафилококков необходимо проявлять настороженность, тщательно проверять чистоту исследуемой культуры и точность ее идентификации. Так, необходимо иметь в виду, что некоторые грамположительные бактерии (Lactobacillus spp., Leuconostoc spp., Pediococcus spp.) обладают природной устойчивостью к гликопептидам . .

Сульфаниламиды и ко-тримоксазол

Полимиксины

ЗАКЛЮЧЕНИЕ

В заключение целесообразно коротко суммировать данные о наиболее распространенных механизмах резистентности среди основных клинически значимых микроорганизмов.

Возбудители внебольничных инфекций

  • Staphylococcus spp. - устойчивость к природным и полусинтетическим пенициллинам , связанная с продукцией β-лактамаз .
  • S.pneumoniae - устойчивость различного уровня к пенициллину (часть штаммов устойчива к цефалоспоринам III поколения), связанная с модификацией ПСБ ; высокая частота ассоциированной устойчивости к макролидам , тетрациклинам , ко-тримоксазолу .
  • H.influenzae , M.catarrhalis - устойчивость к полусинтетическим пенициллинам , связанная с продукцией β-лактамаз .
  • N.gonorrhoeae - устойчивость к пенициллинам , связанная с продукцией β-лактамаз , устойчивость к тетрациклинам , фторхинолонам .
  • Shigella spp. - устойчивость к ампициллину , тетрациклинам , ко-тримоксазолу , хлорамфениколу .
  • Salmonella spp. - устойчивость к ампициллину , ко-тримоксазолу , хлорамфениколу . Появление устойчивости к цефалоспоринам III поколения и фторхинолонам .
  • E.coli - при внебольничных инфекциях МВП - возможна устойчивость к ампициллину , ко-тримоксазолу , гентамицину .
  • Enterobacteriaceae - продукция БЛРС (чаще всего среди Klebsiella spp.), обуславливающая клиническую неэффективность всех цефалоспоринов ; очень высокая частота ассоциированной устойчивости к гентамицину /тобрамицину ; в некоторых учреждениях тенденция к росту ассоциированной резистентности к фторхинолонам , амикацину .
  • Pseudomonas spp., Acinetobacter spp., S.maltophilia - ассоциированная устойчивость к цефалоспоринам , аминогликозидам , фторхинолонам , иногда карбапенемам .
  • Enterococcus spp. - ассоциация устойчивости к пенициллинам , высокого уровня устойчивости к аминогликозидам , фторхинолонам и гликопептидам .
  • Staphylococcus spp. (метициллинорезистентные) - ассоциированная устойчивость к макролидам , аминогликозидам , тетрациклинам , ко-тримоксазолу , фторхинолонам .

Механизмы резистентности к противотуберкулезным препаратам

Особенности патогенеза туберкулеза и биологии возбудителя (медленная пролиферация, длительное персистирование в организме и последующая реактивация инфекции) накладывают определенные отпечатки на формирование устойчивости у микобактерий. Из-за крайне ограниченных возможностей генетического обмена между микобактериями формирование у них резистентности практически всегда связано с накоплением хромосомных мутаций в генах, кодирующих мишени действия препаратов.

Терминология антибиотикоустойчивости микобактерий отличается некоторыми особенностями, что связано с чисто практическими задачами. Согласно рекомендациям ВОЗ, в зависимости от того, получал ли пациент специфическую противотуберкулезную терапию до выделения возбудителя, различают первичную и приобретенную устойчивость. К микроорганизмам с первичной устойчивостью относят штаммы, выделенные от пациентов, не получавших специфическую терапию. Если устойчивый штамм выделен у пациента на фоне противотуберкулезной терапии, то устойчивость расценивают как приобретенную. В тех случаях, когда невозможно достоверно установить факт применения противотуберкулезных препаратов , используют термин "начальная" устойчивость. К множественноустойчивым микобактериям относят микроорганизмы, устойчивые, как минимум, к рифампицину и изониазиду .

Риск развития мутаций, опосредующих устойчивость, составляет: 3,32 x 10 -9 на одно деление клетки для рифампицина ; 2,56 x 10 -8 для изониазида ; 2,29 x 10 -8 для стрептомицина ; 1,0 x 10 -7 для этамбутола . Риск одновременного развития устойчивости к двум препаратам меньше чем 10 -15 . Вероятность такого события крайне низка, особенно учитывая тот факт, что обсемененность микобактериями очага инфекции обычно не превышает 10 8 КОЕ . Учитывая приведенные факты, формирование у микобактерий множественной устойчивости связывают с нарушением режимов антибактериальной терапии, хотя прямых доказательств этому нет.

Рифамицины

Активное выведение, опосредуемое продуктом гена pfmdr , вероятно, является причиной феномена множественной устойчивости P.falciparum к противомалярийным препаратам .

Нитроимидазолы

Ряд простейших, прежде всего T.vaginalis , G.lamblia и E.histolytica , характеризуются анаэробным метаболизмом, во многом сходным с метаболизмом анаэробных бактерий. Чувствительность этих простейших к нитроимидазолам (прежде всего к метронидазолу) объясняется способностью микроорганизмов к восстановлению нитрогруппы препаратов и, таким образом, трансформации их в активную форму, повреждающую ДНК. Донором электронов, участвующим в активации нитроимидазолов , является ферредоксин. Устойчивость анаэробных простейших к нитроимидазолам связана со снижением уровня экспрессии ферредоксина и, следовательно, со снижением способности микроорганизмов активировать препараты.