Виды влагоемкости почвы Влагоемкость почвы­­­­­­­­­­­­­­­–свойство вмещать и удерживать определенное количество воды. Определение влагоемкости почвы Определение полива по влагоемкости почвы


ВЛАГОЕМКОСТЬ ПОЧВЫ -способность почвы удерживать алагу; выражается в процентах от объема или от массы почвы.[ ...]

Полная влагоемкость (ПВ) - наибольшее количество воды, которое может вместить почва при полном заполнении всех пор водой. Если гравитационная вода не подпирается грунтовыми водами, то она стекает в более глубокие горизонты. Наибольшее количество воды, которое остается в почве после обильного увлажнения и стекания всей гравитационной воды при отсутствии слоистости почвы и подпирающего действия грунтовых вод, называется наименьшей или предельно-полевой влагоемкостью (НВ или ППВ).[ ...]

Высокой влагоемкостью обладают лесная подстилка и почва. Наименьшая водопроницаемость свойственна солонцовым почвам, а также сильно подзолистым суглинистым и глинистым, наибольшая - темно-серым почвам и особенно черноземам.[ ...]

Наименьшая влагоемкость (НВ) - это максимальное количество капиллярно-подвешенной влаги, которое способна длительное время удерживать почва после обильного ее увлажнения и свободного стекания воды при условии исключения испарения и капиллярного увлажнения за счет грунтовой воды.[ ...]

Под динамической влагоемкостью понимают количество воды, удерживаемое почвой после полного насыщения и стекания свободной воды при данном уровне грунтовых вод. Динамическая влаго-емкость тем ближе к предельной полевой, чем глубже от дневной поверхности залегает зеркало грунтовых вод. Динамическую влаго-емкость целесообразно определять на монолитах при стоянии грунтовых вод на глубине 45-50 см, 70-80 и 100-110 см.[ ...]

Благодаря высокой влагоемкости и поглотительной способности торф является прекрасным материалом для использования на подстилку животным. Он может поглощать воды в несколько раз больше своего веса. Особенно ценные для подстилки верховые торфы со степенью разложения до 15% и зольностью не выше 10%. Содержание влаги не должно превышать 50%.[ ...]

Полная капиллярная влагоемкость песка или почвы - это количество воды, удерживаемое капиллярными силами в 100 г абсолютно сухого песка или почвы. Для определения влагоемкости служат специальные металлические цилиндры диаметром 4 см, высотой 18 см. Цилиндр имеет сетчатое дно, расположенное на расстоянии 1 см от его нижнего края. На дно цилиндра кладут двойной кружок влажной фильтровальной бумаги, взвешивают цилиндр на технических весах и насыпают в него почти доверху песок, слегка постукивая по стенкам цилиндра, благодаря чему песок будет лежать более плотно. Цилиндры ставят на дно кристаллизатора с небольшим слоем воды. Уровень воды в кристаллизаторе должен быть на 5 - 7 мм выше уровня сетчатого дна. Для уменьшения испарения воды всю установку или только цилиндры закрывают стеклянным колпаком. После того как вода поднимется до поверхности песка, что заметно по изменению его цвета, цилиндры вынимают из воды, обсушивают снаружи и ставят на фильтровальную бумагу. Как только вода перестанет стекать, цилиндры взвешивают на технических весах и на 1 - 2 ч помещают в кристаллизатор под колпак и вновь взвешивают. Эту операцию повторяют до тех пор, пока вес цилиндра с почвой, поглотившей воду, не станет постоянным. Нельзя после первого взвешивания ставить цилиндр в воду на длительное время, так как тогда может произойти сильное уплотнение почвы. Определение влагоемкости проводят в двукратной повторности. Одновременно берут две пробы для определения влажности.[ ...]

Полная (максимальная) влагоемкость (ПВ), или водовмести-мость, - это количество влаги, удерживаемое почвой в состоянии полного насыщения, когда все поры (капиллярные и некапиллярные) заполнены водой.[ ...]

Максимальная молекулярная влагоемкость (ММВ) соответствует наибольшему содержанию рыхлосвязанной воды, удерживаемой сорбционными силами или силами молекулярного притяжения.[ ...]

Общая (по Н. А. Качинскому) или наименьшая (по А. А. Роде) влагоемкость почвы или предельная полевая (по А. П. Розову) и полевая (по С. И. Долгову)-количество влаги, которое почва удерживает после увлажнения при свободном оттоке гравитационной воды. Разноименность этой важной гидрологической константы вносит много путаницы. Неудачен термин «наименьшая влагоемкость», так как он противоречит факту максимального содержания при этом влаги в почве. Не совсем удачны и два других термина, но, поскольку нет более подходящего названия, впредь мы будем использовать термин «общая влагоемкость». Название «общая» Н. А. Качинский объясняет тем, что влажность почвы при этой гидрологической константе включает в себя все основные категории почвенной влаги (кроме гравитационной). Константу, характеризующую общую влагоемкость, широко используют в мелиоративной практике, где ее называют полевой влагоемкостью (ПВ), что наряду с общей влагоемкостью (ОБ)-наиболее распространенный термин.[ ...]

При длительном состоянии насыщения почв водой до полной влагоемкости в них развиваются анаэробные процессы, снижающие ее плодородие и продуктивность растений. Оптимальной для растений считается относительная влажность почв в пределах 50- 60 % ПВ.[ ...]

Значительно различаются почвы исследованных групп ТЛУ и по общей влагоемкости основного корнеобитаемого слоя: в I группе полевая или наименьшая влагоемко сть составляет 50-60 мм, во II - 90-120 мм, в III - 150-160 мм. Диапазон доступной влаги равен соответственно 39-51 мм, 74-105 мм и 112-127 мм. Такая разница связана как с мощностью почв, так и в большей степени с возрастанием влагоемкости верхних горизонтов. Наибольшей влагоемкостью обладает верхний 10-санти-метровый слой почвы. С глубиной влагоемкость, как правило, снижается, а диапазон доступной влаги уменьшается во всех случаях. В почвах I группы ТЛУ в верхнем 10-сантиметровом слое содержится до 60 % всех запасов влаги при полевой влагоемкости, а в почвах III группы эта доля снижается до 30 %.[ ...]

Подготовительной работой является определение гигроскопической воды и влагоемкости почвы.[ ...]

Влажность в сосудах с отверстиями в дне поддерживается на уровне полной влагоемкости почвы. Для этого сосуды ежедневно поливают до протекания в поддонник первой капяи жидкости. Во время дождя поливать не надо; следует даже заботиться о том, чтобы дождь не переполнил поддонника, ибо тогда питательный раствор будет потерян. Именно поэтому объем поддонника должен быть не менее 0,5 л, лучше - до 1 л. Прежде чем поливать сосуд, в него переливают всю жидкость из поддонника. Если ев слишком много, переливают до просачивания первой капли.[ ...]

На дно сосуда слоем 1-1,5 см помещают чистый песок, увлажненный до 60% своей влагоемкости (15 мл воды на 100 г). На сосуд берут около 200 г песка.[ ...]

Если в тяжелосуглинистой почве влажность завядания составляет 12%, а общая влагоемкость равна 30%, то диапазон активной влаги "(¥дав = 30 - 12 = 18%.[ ...]

Для почв нормального увлажнения состояние влажности, соответствующее полной влагоемкости, может быть после снеготаяния, обильных дождей или при поливе большими нормами воды. Для избыточно влажных (гидроморфных) почв состояние полной влагоемкости может быть длительным или постоянным.[ ...]

Установлено, что оптимальной влажностью для нитрификации является 50-70% от полной влагоемкости почвы, оптимальной температурой является 25-30°.[ ...]

Использование торфа на подстилку. Торф - прекрасный подстилочный материал. Высокая влагоемкость его обусловливает максимальное поглощение жидких выделений животных, а кислотность и большая емкость поглощения - сохранение аммиачного азота.[ ...]

Количество гравитационной воды определяют как разность между водовместимостью и общей влагоемкостью (№в-ОВ).[ ...]

Вначале (несколько дней) растения поливают во всех сосудах равным количеством воды, в дальнейшем - до 60 - 70% от влагоемкости абсолютно сухого песка. Зная вес абсолютно сухого песка в сосуде, рассчитывают, какое количество воды должно быть в нем. На этикетке сосуда пишут вес для полива. Он является суммой следующих величин: веса тарированного сосуда, веса абсолютно сухого песка, веса воды.[ ...]

Допустим, что на площади в 1 га плотность (удельная ¡масса) почвы слоем от 0 до 10 см в глубину составляет 1100 ¡кг/м3, а влагоемкость - не менее 27,4 весового процента. Для одного гектара это соответствует 301 м3 воды. Если доступная влага в данном случае составляет 19,8 весового процента, для рассматриваемого слоя почвы это будет соответствовать 218 м3 воды (такое количество воды равно 21,8 мм доступных осадков). Поверхностно внесенный гербицид, растворяясь в дополнительных осадках и почвенном растворе, проникает в почву за счет диффузионного переноса последнего, т. е. этому -процессу способствует ¡почвенная влага. В почве, где содержание воды намного ниже капиллярной влагоемкости, растворение и проникание гербицидов затрудняется. И наоборот, если почва насыщена влагой и ее верхний слой не высох, для обеспечения проникания и диффузии гербицидов достаточно осадков меньше расчетного уровня.[ ...]

Гравий (3-1 мм) - обломки первичных минералов, водопроницаемость провальная, водоподъемная способность отсутствует, влагоемкость очень низкая ([ ...]

Максимальное количество капиллярно-подпертой влаги, которое может содержаться в почве над уровнем грунтовых вод, называется капиллярной влагоемкостью (КВ).[ ...]

Существуют два типа сосудов: сосуды Вагнера и сосуды Митчерлиха. В металлических сосудах первого типа полив производится по весу до 60 - 70% от полной влагоемкости почвы через впаянную сбоку трубку, в стеклянных сосудах - через стеклянную трубку, вставленную в сосуд. В сосудах Митчерлиха на дне имеется продолговатое отверстие, закрытое сверху желобом.[ ...]

Ухудшение аэрации в результате повышения влажности почвы приводит к снижению ОВ-потенциала. Наиболее резко он падает при влажности, близкой к полной влагоемкости (>90 % ПВ), когда сильно нарушается нормальный газообмен почвенного воздуха с атмосферным. При повышении влажности с 10 до 90 % ПВ снижение потенциала в большинстве почв происходит медленно.[ ...]

Для растений не так важно общее количество почвенной влаги, как доступность. Уровень доступной растениям воды находится между точкой устойчивого завядания и полевой влагоемкостью. Эту воду часто называют капиллярной. В почве она удерживается в тонких порах, где ее стеканию препятствуют капиллярные силы, а также в виде пленок вокруг почвенных частиц (рис. 60). Почвы различаются по своей способности удерживать влагу, что связано с их механическим составом (табл. 8). Хотя песчаные почвы лучше дренированы и аэрированы, но они обладают более низкой водоудерживающей способностью, чем глинистые почвы. Общее количество капиллярной воды в песчаных почвах может быть увеличено путем повышения содержания в них органического вещества. Количество доступной для растений воды зависит от многих факторов, в том числе от типа и глубины почвы, глубины залегания корневой системы культуры, скорости потери воды на испарение и транспирацию, температуры и скорости поступления дополнительной воды. Кроме того, содержание доступной растениям воды имеет значение само по себе. Чем меньше воды в почве, тем прочнее она удерживается. Прочность измеряется в атмосферах давления, требующегося для отнятия воды. При полевой влагоемкости вода удерживается силой примерно 15 атм.[ ...]

Опытными данными установлено, что благодаря внесению в почву гуматов от 0,1 до 3% массы грунта формируется в течение от 2 недель до 3 месяцев характерная почвенная структура. Влагоемкость в глинистых грунтах возрастает на 15-20%, в суглинистых - на 20-30%, в супесчаных и песчаных грунтах- в 5-10 раз. Устойчивость грунтов к водной эрозии увеличивается в 4-8 раз при хорошем развитии растительности .[ ...]

Для пояснения терминов, применяемых в табл. 5.2.1 и при описании водного режима почв, ниже приведена краткая характеристика выделяемых категорий почвенной влаги. Наименьшая влагоемкость (НВ) - наибольшее количество впитавшейся в почву воды, удерживаемой в капиллярах почвы после стекания свободной гравитационной влаги. Капиллярная влага, содержащаяся в почве при НВ, имеет высокую степень подвижности и доступности для растений. При влажности 80-100% от НВ в почве складываются наиболее благоприятные условия для влагоснабжения растений.[ ...]

В бесструктурной распыленной почве тяжелого механического состава складывается неблагоприятный физический режим. Вода и воздух в ней являются антагонистами. Порозность и влагоемкость представлены малыми величинами. Вследствие плохой водопроницаемости бесструктурная почва плохо впитывает воду, сток ее по поверхности приводит к эрозии. Плохая водопроницаемость, малая влагоемкость не обеспечивают достаточных запасов воды. Весной и осенью поры в такой почве бывают заполнены водой, а воздух в них отсутствует. С повышением же температуры благодаря тонкопористому сложению происходит интенсивное испарение воды и просушивание почвы на большую глубину. Растения в этот период страдают от засухи. После дождя или полива поверхность бесструктурной почвы заплывает, резко повышается липкость. При высыхании такая почва сильно уплотняется, на поверхности поля образуется плотная корка, что затрудняет рост и развитие растений. При сильном просушивании образуются глубокие трещины и при этом корни растений могут быть порваны. Требуются повторные рыхления после дождя и поливов. Распыленные почвы легко подвергаются ветровой эрозии.[ ...]

Зеленое удобрение, как и другие органические удобрения, запаханное в почву, несколько снижает ее кислотность, уменьшает подвижность алюминия, повышает буферность, емкость поглощения, влагоемкость, водопроницаемость, улучшает структуру почвы. О положительном влиянии зеленого удобрения на физические и физико-химические свойства почвы свидетельствуют данные многочисленных исследований. Так, в песчаной почве Новозыбковской опытной станции к концу четырех ротаций севооборота с чередованием пар - озимые - картофель - овес, в зависимости от использования люпина в виде самостоятельной культуры в пару и пожнивной культуры после озимых, содержание гумуса и величина капиллярной влагоемкости почвы были различны (табл. 136).[ ...]

Очень важно при проведении опыта поддерживать во всех сосудах одинаковую (и достаточную) влажность почвы. Для установления желательной влажности необходимо знать водные свойства почвы, в частности ее влагоемкость и влажность при набивке сосудов. Влажность почвы в сосудах доводят обычно до 60-70% ее капиллярной влагоемкости и поддерживают на этом уровне в течение всей вегетации растений. Регулирование ее в сосудах осуществляют ежедневным поливом растений по весу сосуда.[ ...]

Количество воды в почве может быть выражено различными способами. Для некоторых целей влажность почвы определяют в миллиметрах на гектар. При определении физических условий почвы влажность выражают термином «полевая влагоемкость», которая имеет большое значение для сельского хозяйства. Под полевой влагоемкостью понимают максимальное количество воды, удерживаемое почвой после стекания внесенной на ее поверхность воды и после того, как невпитавшаяся (свободная вода) под действием силы тяжести удалится из почвы1.[ ...]

Гравий (3-1 мм) - состоит из обломков первичных минералов. Высокое содержание гравия в почвах не препятствует обработке, но придает им неблагоприятные свойства - провальную водопроницаемость, отсутствие водоподъемной способности, низкую влагоемкость. Влагоемкость гравия ([ ...]

Чтобы обеспечить постоянную работоспособность сушильного агента, необходимо удалять из камеры часть насыщенного влагой воздуха, а взамен него подавать свежий воздух, который при нагревании становится более сухим и, смешиваясь с рабочим сушильным агентом, повышает влагоемкость последнего. Он должен совершаться непрерывно в течение всего процесса сушки, за исключением начальной стадии - периода прогрева материала и тепловлагообработки.[ ...]

При НВ в почве 55-75 % пор заполнено водой, создаются оптимальные условия влаго- и воздухообеспеченности растений. Величина НВ зависит от гранулометрического состава, содержания гумуса и сложения почвы. Чем тяжелее почва по гранулометрическому составу, чем больше в ней гумуса, тем выше ее наименьшая влагоемкость. Очень рыхлая и сильноплотная почвы имеют меньшую влагоемкость (НВ), чем почвы средней плотности. Для суглинистых и глинистых почв величина НВ колеблется от 20 до 45 % абсолютной влажности почв. Наибольшие значения НВ характерны для гумусированных почв тяжелого гранулометрического состава с хорошо выраженной макро- и микроструктурой.[ ...]

В заключение можно отметить, что физические свойства подстилки на незаболоченных вырубках и на вырубках начальной стадии заболачивания (мощность подстилки до 13- 15 см) очень близки. Но в это время создаются сильные различия в водно-воздушном режиме. Торфянистая подстилка под кукушкиным льном в силу большей влагоемкости имеет менее благоприятный воздушный режим, особенно весной, и значительно более высокий запас влаги.[ ...]

С повышением влажности почвы гербицидная активность препаратов, как правило, повышалась, но в различной степени и до определенного предела. Наибольшая фитотоксичность препаратов при их заделке в почву проявилась при влажности 50-60% полной влагоемкости почвы.[ ...]

ДЦЭ а ДДД (рис. 2) обнаруживала тенденцию я исчезновению из почвы независимо от ее влажности. В условиях залива почвы водой или недостаточной аэрации продукты первоначального распада ДДГ - ДЯЭ и ДДД оказались более стойкими, чем 4,41-ДДТ. На-, против, при влажности почвы, оптимальной для развития растений и аэробной микрофлоры (60% от полной влагоемкости), более стойким соединением оказывался 4,41-ДДТ.[ ...]

Типичные черноземы имеют большей частью глинистый и тяжелосуглинистый механический состав. Удельный вес твердой фазы в них колеблется в интервале 2,38-2,59 г/см3; объемный вес - 0,93-0,99 г/см3; общая порозность сравнительно высокая, доходит до 63%, причем более 50% приходится на долю некапиллярной. Типичные черноземы отличаются хорошей водопроницаемостью. Полевая влагоемкость этих почв равна 39-41% (Гарифуллин, 1969).[ ...]

АБИОТИЧЕСКИЕ ФАКТОРЫ В ЭКОСИСТЕМАХ - факторы, разделяющиеся на радиацию (космическая, солнечная) с ее вековой, годовой и суточной цикличностью: на зональные, высотные и глубинные факторы распределения тепла и света с градиентами и закономерностями циркуляции воздушных масс; факторы литосферы с ее рельефом, различным минеральным составом и гранулометрией, тепло- и влагоемкостью; факторы гидросферы с градиентами ее состава, закономерностями водо- и газообмена.[ ...]

Одно из наиболее важных физических свойств почвы - ее механический состав, т.е. содержание частиц разного размера. Установлены четыре градации механического состава: песок, супесь, суглинок и глина. От механического состава зависят водопроницаемость почвы, ее способность удерживать влагу, проникновение в нее корней растений и др. Кроме того, каждая почва характеризуется плотностью, тепловыми свойствами, влагоемкостью и вла-гопроницаемостью. Большое значение имеет аэрация, т.е. насыщение почвы воздухом и способность к такому насыщению.[ ...]

Интенсивность впитывания зависит не только от водных свойств почво-грунтов, но в значительной степени определяется и их влажностью. Если почва сухая, она обладает большой инфильтрацион-ной способностью и в первый период времени после начала дождя интенсивность впитывания близка к интенсивности дождя. С увеличением влажности почво-грунтов интенсивность инфильтрации постепенно уменьшается и при достижении полной влагоемкости в стадии фильтрации становится постоянной, равной коэффициенту фильтрации (см. § 92) данного почво-грунта.[ ...]

Очень важной операцией по уходу за растениями в вегетационном опыте является полив. Сосуды поливают ежедневно, в ранние утренние или вечерние часы, в зависимости от темы опыта. Следует отметить, что полив водопроводной водой не годится при проведении опытов с известкованием. Полив проводят по весу до установленной для опыта оптимальной влажности. Для установления необходимой влажности почвы предварительно определяют полную влагоемкость и влажность ее при набивке сосудов. Вес сосудов к поливу вычисляют, исходя из желательной оптимальной влажности, которая обычно составляет 60-70% полной влагоемкости почвы, суммируя веса тарированного сосуда, песка, добавленного снизу и сверху сосуда при набивке и посеве, каркаса, сухой почвы и необходимого количества воды. Вес сосуда к поливу пишут на этикетке, наклеенной на чехле. В жаркую погоду приходится поливать сосуды дважды, один раз давая определенный объем воды, а другой раз доводя до заданного веса. Чтобы иметь более одинаковые условия освещения для всех сосудов, их ежедневно во время поливки меняют местами, а также передвигают на один ряд вдоль вагонетки. Сосуды помещают обычно на вагонетки; в ясную погоду их выкатывают на открытый воздух под сетку, а на ночь и в непогоду увозят под стеклянную крышу. Сосуды Митчерлиха устанавливают на неподвижно закрепленных столах под сеткой.[ ...]

Значительная часть торфяных болот Севера возникла на месте прежних сосновых и еловых лесов. На некоторой стадии выщелачивания лесных почв древесной растительности начинает не хватать питательных веществ. Появляется не требовательная к условиям питания моховая растительность, постепенно вытесняющая древесную. Нарушается водно-воздушный режим в поверхностных слоях почвы. В результате под пологом леса, особенно при ровном рельефе, близком залегании водоупора и влагоемких почвах, создаются благоприятные для заболачивания условия. Предвестниками заболачивания лесов часто являются зеленые мхи, в частности кукушкин лен. Их сменяют различные виды сфагнового мха - типичного представителя болотных мхов. Старые поколения деревьев постепенно отмирают, на смену им приходит типичная болотная древесная растительность.

Вода в почве является одним из основных факторов почвообразования и одним из главнейших условий плодородия. В мелиоративном отношении особенно важное значение вода приобретает как физическая система, находящаяся в сложных взаимоотношениях с твердой и газообразной фазой почвы и растением (рис. 9). Недостаток воды в почве губительно отражается на урожае. Лишь при необходимом для нормального роста и развития растений содержании жидкой воды и элементов питания в почве при благоприятных воздушных и термических условиях можно получить высокий урожай. Основной источник воды в почве - выпадающие осадки, каждый миллиметр которых на гектаре составляет 10м3, или 10т воды. На Земле непрерывно совершается круговорот воды. Это постоянно протекающий геофизический процесс, включающий следующие звенья: а) испарение воды с поверхности мирового океана; б) перенос паров воздушными потоками в атмосфере; в) образование облаков и выпадение осадков над океаном и сушей; г) движение воды на поверхности Земли и в недрах ее (аккумуляция осадков, сток, инфильтрация, испарение). Содержание воды в почве определяется климатическими условиями зоны и водоудерживающей способность почвы. Роль почвы во внешнем влагообороте и внутреннем влагообмене повышается в результате ее окультуривания, когда заметно увеличиваются влажность, водопроницаемость и влагоемкость, но сокращаются поверхностный сток и бесполезное испарение.

Влажность почвы

Содержание воды в почве колеблется в пределах от сильного иссушения (физиологической сухости) до полного насыщения и переувлажнения. Количество воды, находящейся в данный момент в почве и выраженное в весовых или объемных процентах по отношению к абсолютной сухой почве, называется влажностью почвы. Зная влажность почвы, нетрудно определить запас почвенной влаги. Одна и та же почва может быть неодинаково увлажнена на разных глубинах и в отдельных участках почвенного разреза. Увлажненность почвы зависит от физических свойств ее, водопроницаемости, влагоемкости, капиллярности, удельной поверхности и других условий увлажнения. Изменение влажности почв и создание благоприятных условий увлажнения в течение вегетационного периода достигаются приемами агротехники. Каждая почва имеет свою динамику влажности, меняющуюся по генетическим горизонтам. Различают влажность абсолютную, характеризующуюся валовым (абсолютным) количеством влаги в почве в данной точке на данный момент, выраженном в процентах от веса или объема почвы, и влажность относительную, исчисляемую в процентах от пористости (полной влагоемкости). Влажность почвы определяется разными методами.

Влагоемкость почв

Влагоемкость - свойство почвы поглощать и удерживать то максимальное количество воды, которое в данное время соответствует воздействию на нее сил и условиям внешней среды. Это свойство зависит от состояния увлажненности, пористости, температуры почвы, концентрации и состава почвенных растворов, степени окультуренности, а также от других факторов и условий почвообразования. Чем выше температура почвы и воздуха, тем меньше влагоемкость, за исключением почв, обогащенных перегноем. Влагоемкость меняется по генетическим горизонтам и высоте почвенной колонны. В почвенной колонне как бы заключена водная колонна, форма которой зависит от высоты столба почвенного грунта над зеркалом и от условия увлажнения с поверхности. Форма такой колонны будет соответствовать природной зоне. Эти колонны в природных условиях меняются по сезонам года, а также от погодных условий и колебания влажности почвы. Водная колонна изменяется, приближаясь к оптимальной, в условиях окультуривания и мелиорации почвы. Различаются следующие виды влагоемкости: а) полная; б) максимальная адсорбционная; в) капиллярная; г) наименьшая полевая и предельная полевая влагоемкость. Все виды влагоемкости меняются с развитием почвы в природе и еще более - в производственных условиях. Даже одна обработка (рыхление спелой почвы) может улучшить ее водные свойства, увеличивая полевую влагоемкость. А внесение в почву минеральных и органических удобрений или других влагоемких веществ может на длительное время улучшить водные свойства или влагоемкость. Это достигается заделкой в почву навоза, торфа, компоста и других влагоемких веществ. Мелиорирующее действие может оказывать внесение в почву влагоудерживающих высокопористых влагоемких веществ типа перлитов, вермикулита, керамзита.

Кроме основного источника лучистой энергии, в почву поступает тепло, выделяемое при экзотермических, физико-химических и биохимических реакциях. Однако тепло, получаемое в результате биологических и фотохимических процессов, почти не изменяет температуру почвы. В летнее время сухая нагретая почва может повышать температуру вследствие смачивания. Эта теплота известна род названием теплоты смачивания. Она проявляется при слабом смачивании почв, богатых органическими и минеральными (глинистыми) коллоидами. Весьма незначительное нагревание почвы может быть связано с внутренней теплотой Земли. Из других второстепенных источников тепла следует назвать «скрытую теплоту» фазовых превращений, освобождающуюся в процессе кристаллизации, конденсации и замерзании воды и т. д. В зависимости от механического состава, содержания перегноя, окраски и увлажнения различают теплые и холодные почвы. Теплоемкость определяется количеством тепла в калориях, которое необходимо затратить, чтобы поднять температуру единицы массы (1г) или объема (1 см3) почвы на 1оС. Из таблицы видно, что с увеличением влажности теплоемкость меньше возрастает у песков, больше у глины и еще больше у торфа. Поэтому торф и глина являются холодными почвами, а песчаные - теплыми. Теплопроводность и температуропроводность. Теплопроводность - способность почвы проводить тепло. Она выражается количеством тепла в калориях, проходящего в секунду через площадь поперечного сечения 1 см2 через слой 1 см при температурном градиенте между двумя поверхностями 1оС. Воздушно-сухая почва обладает более низкой теплопроводностью, чем влажная. Это объясняется большим тепловым контактом между отдельными частицами почвы, объединенными водными оболочками. Наряду с теплопроводностью различают температуропроводность - ход изменения температуры в почве. Температуропроводность характеризует изменение температуры на единице площади в единицу времени. Она равна теплопроводности, деленной на объемную теплоемкость почвы. При кристаллизации льда в порах почвы проявляется кристаллизационная сила, вследствие чего закупориваются и расклиниваются почвенные поры и возникает так называемое морозное пучение. Рост кристаллов льда в крупных порах вызывает подток воды из мелких капилляров, где в соответствии с уменьшающимися их размерами замерзание воды запаздывает .

Источники поступающего в почву тепла и расходования его - неодинаковые для различных зон, поэтому тепловой баланс почв может быть и положительным и отрицательным. В первом случае почва получает тепла больше, чем отдает, а во втором - наоборот. Но тепловой баланс почв любой зоне с течением времени заметно изменяется. Тепловой баланс почвы поддается регулированию в суточном, сезонном, годичном и многолетнем интервале, что позволяет создать более благоприятный термический режим почв. Тепловым балансом почв природных зон можно управлять не только через гидромелиорации, но и соответственными агромелиорациями и лесомелиорациями, а также некоторыми приемами агротехники. Растительный покров усредняет температуру почвы, уменьшая ее годовой теплооборот, способствуя охлаждению приземного слоя воздуха вследствие транспирации и излучения тепла. Большие водоемы и водохранилища умеряют температуру воздуха. Весьма простые мероприятия, например культура растений на гребнях и грядах, дают возможность создать благоприятные условия теплового, светового, водно-воздушного режима почвы на Крайнем Севере. В солнечные дни среднесуточная температура в корнеобитаемом слое почвы на гребнях на несколько градусов выше, чем на выровненной поверхности. Перспективно применение электрического, водяного и парового отопления, используя промышленные отходы энергии и неорганические природные ресурсы.

Таким образом, регулирование теплового режима и теплового баланса почвы вместе с водно-воздушным имеет весьма большое практическое и научное значение. Задача заключается в том, чтобы управлять тепловым режимом почвы, особенно уменьшением промерзания и ускорением оттаивания ее.


Наименьшая (или предельная полевая) влагоемкость показывает количество воды, удерживаемое почвой в практически неподвижном состоянии после обильного полива и просачивания избыточной воды под влиянием силы тяжести. Определение делается в природных условиях. При залегании грунтовых вод глубже 3 м определение показывает «истинную наименьшую влагоемкость», а при более близких грунтовых водах - более высокое содержание, достигающее величины «капиллярной влагоемкости». Глубину грунтовых вод следует указывать при определении.
Влагоемкость, определяемая описанным ниже методом, называется различными исследователями: общая влагоемкость (Качинский, Вадюнина), предельная полевая влагоемкость (Астапов, Розов, Долгов), наименьшая полевая влагоемкость (Березинь, Рыжов, Зимина), полевая влагоемкость (Ревут, Гречин).
Порядок определения наименьшей влагоемкости. Выбирают ровный, типичный для данного поля участок и на нем окружают земляным валиком высотой 30-40 см площадку размером 1,5х1,5 л. Землю для насыпания валиков берут вне площадки, поверхность площадки оберегают от затаптывания. Для ограждения площадки вместо земляных валиков иногда применяют деревянные или железные рамы. Поблизости от площадки закладывают и описывают почвенный разрез, в стенке которого берут образцы почвы по генетическим горизонтам для определения влажности, объемного и удельного веса почвы.
Для промачивания почвы до 1,5 м на каждый квадратный метр площадки надо приготовить 200-300 л на суглинистых или 200 л воды на супесчаных почвах. Во избежание размыва поверхности под струю воды, подаваемой на площадку, необходимо подложить кусок фанеры или слой соломы. Вода подается постепенно, так чтобы не создавать слоя воды на поверхности выше б см.
Когда вся поданная на площадку вода впитается в почву, ее покрывают для предохранения от испарения с поверхности клеенкой или пластиком и толстым слоем соломы (до 0,5 м), которую прижимают сверху землей.
Просачивание излишней воды из первого метра почвы в основном заканчивается на песчаных почвах за 1-2 суток, на суглинистых - 3-5 и глинистых - 5-10 суток. Однако и после этого срока почвенная влага продолжает медленно просачиваться вниз. Поэтому рекомендуют определение наименьшей влагоемкости в три срока - через 1,3 и 10 суток, обозначая их индексами HB1, HB3 и HB10. Для песчаных и супесчаных почв достаточно определить HB1 и HB3.
Почвенные пробы для определения влажности отбирают буром с трех-пяти мест послойно через 10 см. Для этого на площадку кладут доску и, стоя на ней и не снимая покрытия почвы, производят бурение в центральной части площадки 80х80 см. Отверстия скважин после взятия проб плотно забивают почвой.
Наименьшую (предельную полевую) влагоемкость можно определить во всех случаях обильного увлажнения почвы - ранней весной после полного оттаивания почвы и впитывания талых вод или после полива орошаемых участков. После увлажнения выбранную площадку закрывают клеенкой, соломой и через соответствующие интервалы бурят и определяют влажность почвы площадки.
Наименьшая влагоемкость зависит от механического состава - от 20% объема супесчаных до 40% от объема суглинистых и глинистых почв, и несколько уменьшается с глубиной. Наименьшая влагоемкость тяжелой почвы зависит также от сложения, приемов обработки, структурности, внесения извести.
Вычисляют наименьшую влагоемкость послойно для каждых 10 см в процентах от объема почвы, поэтому необходимо определять объемный вес почвы. Если наименьшая влагоемкость составляет 70-80% общей порозности, то это считается благоприятным для сельскохозяйственных культур, при 80-90% - посредственным, а свыше 90% - неудовлетворительным из-за недостаточного содержания воздуха.

В лабораторных условиях можно определить величину наименьшей влагоемкости почвы, которая примерно соответствует предельной полевой влагоемкости (Долгов, 1948). При работе с насыпной почвой (например, при набивке вегетационных сосудов) определение в трубках даст более правильный результат, чем полевое определение влагоемкости.
Для определения берут стеклянные трубки длиной в 60-80 см с внутренним диаметром около 3 см. Нижний конец трубки обвязывается полотном или марлей. При подготовке почву доводят до воздушно-сухого состояния и пропускают через грохот (2-3 мм), но не растирают.
При набивке почвы принимают меры против образования слоистости, что достигается насыпанием почвы через воронку, на носик которой надета достаточно широкая каучуковая трубка, доходящая до дна стеклянной трубки. При насыпании почва заполняет воронку и всю каучуковую трубку. При постоянном постукивании и вращении стеклянной трубки начинают медленно поднимать воронку с каучуковой трубкой, не отрывая нижнего конца трубки от высыпавшейся почвы; при этом почва сплошным столбом, без сортировки, выходит из каучуковой трубки и заполняет стеклянную трубку. Этим приемом удается избежать образования слоистости, неизбежной при простом насыпании почвы в трубку.
Полив почвы производят с таким расчетом, чтобы почвенный столб промачивался не до дна; нижняя сухая зона может быть небольшой. Ход промачивания регистрируется сквозь стеклянные стенки раз в сутки по увлажнении почвы. Для предотвращения подсыхания с поверхности почвы верх трубок закрывается пробкой с вставленным в нее кали-аппаратом, заполненным водой, что позволяет воздуху входить после насыщения водяными парами.
После прекращения передвижения воды (через 30-40 дней) стеклянные трубки разрезают и послойно определяют влажность в каждых 2 или 4 см. Влажность верхних (обычно переувлажненных) слоев в 4-6 см не принимают во внимание, так же как и в нижних переходных слоях длиной 20-25 см, прилегающих к сухой почве.
Выше переходной зоны во всех слоях, кроме самых верхних, влажность колеблется незначительно и примерно соответствует значению предельной полевой влагоемкости, определяемой в природной полевой обстановке.
Удовлетворительное совпадение лабораторных и полевых определений найдено С.И. Долговым только для пахотного слоя почвы. Для всех подпахотных образцов лабораторные определения дали завышенные значения.
Для быстрого определения наименьшей влагоемкости (по Долгову) воздушно-сухую почву набивают в сосуд высотой 30 см или в широкую трубку высотой около 40 см, стараясь достичь такого же уплотнения почвы, как при набивке сосудов вегетационного опыта. Затем осторожным приливанием воды смачивают верхнюю часть почвенного столба и оставляют в укрытом состоянии на сутки. Через сутки почва в слое от 5 до 10-15 см будет иметь влажность наименьшей влагоемкости. Определение будет правильным, если в нижней части почвенного столба осталась воздушно-сухая почва.
С.И. Долгов считает более правильным рассчитывать полив вегетационных опытов не по полной влагоемкости, а по наименьшей влагоемкости, допуская в опыте колебания влажности от 70 до 100% от наименьшей влагоемкости.

Влагоемкостью почвы называется способность почв вмещать и удерживать в себе определенное количество воды.

Выполнение анализа: Берут цилиндр с сетчатым дном и взвешивают его. Взвешенный цилиндр наполняют на ¾ объема воздушно-сухой почвой и снова взвешивают.

Погружают цилиндр с почвой в сосуд с водой и доводят уровень воды в сосуде до уровня почвы в цилиндре. После того, как вода пропитает всю почву, дают стечь излишней воде, протирают увлажненную поверхность цилиндра, взвешивают и производят расчеты.

А = 100 (с - в) / (в - а)

где: А – влагоемкость почвы, %; а – масса пустого цилиндра, г; в – масса цилиндра с почвой до погружения в воду, г; с – масса цилиндра с почвой после насыщения водой, г.

Определение капиллярности почвы

Под капиллярностью понимают водоподъемную способность почвы по капиллярам из нижних слоев в верхние, которая зависит от ее механического состава, т.е. чем меньше частицы почвы, тем выше капиллярный подъем влаги. Высокая капиллярность нередко служит основной причиной сырости почвы, помещений, если не принимаются соответствующие меры (гидроизоляция).

Выполнение анализа: В штативе устанавливают ряд (в зависимости от образцов почвы) высоких 50 – 100 см стеклянных трубок диаметром 2-3 см с сантиметровым делением. Каждую трубку заполняют исследуемой почвой. Нижние концы трубок обвязывают полотном и погружают в ванночки с водой на глубину 0,5 см. По изменению окраски почвы следят за быстротой и высотой подъема воды, отмечая её уровень в сантиметрах через 5; 10; 15; 20 и 60 минут, а далее через каждый час до прекращения водоподъема.

Определение водопроницаемости почвы

Водопроницаемостью называется способность почвы проводить воду из верхних слоев в нижние. Водопроницаемость (фильтрационная способность) определяется количеством воды, просачивающейся через определенный слой почвы в единицу времени и зависит от размера ее зерен, наличия коллоидных частиц, а также от высоты слоя воды над ней.

Водопроницаемость песчаных почв – 5-8 мин, глинистых – 15 мин и более.

Выполнение анализа: Берут стеклянную трубку диаметром 3-4 см, высотой 25-30 см. Нижний конец трубки подвязывают полотном и наполняют сухой измельченной почвой до высоты 20 см, равномерно распределяя ее легким постукиванием о стенки трубки. Трубку с почвой укрепляют в штативе и наливают в нее воду, постоянно поддерживая высоту уровня воды над почвой в 4 см до появления первой капли прошедшей через матерчатое дно трубки. В ходе определения водопроницаемости отмечают время с начала заливания воды, и время появления первой капли. Разница во времени показывает быстроту прохождения воды через слой почвы в 20 см.

Запись результатов исследований

Номер пробы почвы

Физические свойства почвы

Температура, о С

Порозность,

Влагоемкость,

Капилярность,

Водопроницаемость, сек